L'objecte principal d'estudi d'aquesta tesi és el desenvolupament de solucionadors escalables i robustos basats en mètodes de descomposició de dominis (DD) per als sistemes lineals que sorgeixen en la discretització mitjançant elements finits (FE) de problemes transitoris i electromagnètics. La tesi comença amb una revisió teòrica dels FE d'eix (o de Nédélec) de la primera família i una descripció exhaustiva d'una estratègia d'implementació general per a elements h i p-adaptatius d'ordre arbitrari en malles de tetraedres i hexaedres no conformes. Llavors, es presenta un nou precondicionador de descomposició de dominis balancejats per restricció (BDDC) que és robust per a problemes amb múltiples materials i/o heterogenis definits en espais curl-conformes. El nou mètode, en contrast amb els enfocaments existents, està basat en la definició dels ingredients del precondicionador segons els coeficients físics del problema i no requereix informació espectral. El resultat és un precondicionador robust i escalable que preserva la simplicitat del mètode BDDC original. Quan tractem amb problemes transitoris, la direcció temporal ofereix ella mateixa l'oportunitat de seguir explotant paral·lelisme. Amb l'objectiu de dissenyar precondicionadors en espai-temps, primer, proposem solucionadors paral·lels en temps per a equacions diferencials ordinàries lineals i no lineals, basats en un solucionador eficient del complement de Schur d'una partició multinivell de l'interval de temps. Seguidament, aquestes idees es combinen amb conceptes de DD amb l'objectiu de dissenyar precondicionadors com a extensió a espai-temps dels mètodes de BDDC. Els ingredients clau d'aquests nous mètodes es defineixen de tal manera que preserven la causalitat del temps, on la informació només viatja de temps passats a temps futurs. Els esquemes proposats són dèbilment escalables en temps i en espai-temps, és a dir, permeten explotar eficientment recursos computacionals creixents per resoldre més passos de temps en (aproximadament) el mateix temps transcorregut de càlcul. Tots els desenvolupaments presentats aquí són motivats pel problema d'aplicació de la tesi, la simulació de la resposta electromagnètica de baixa freqüència dels superconductors d'alta temperatura (HTS) en 3D. Al llarg del document, es realitza un conjunt exhaustiu d'experiments numèrics, els quals inclouen la simulació d'un problema de HTS realista en 3D, per validar la idoneïtat i el rendiment paral·lel de la implementació per a computació d'alt rendiment dels algorismes proposats.


Thesis URL