En este trabajo se aborda el desarrollo del Método de Puntos Finitos (MPF) y su aplicación a problemas de aerodinámica de flujos compresibles. El objetivo principal es investigar el potencial de la técnica sin malla para la solución de problemas prácticos, lo cual constituye una de las limitaciones más importantes de los métodos sin malla. En primer lugar se estudia la aproximación espacial en el MPF, haciendo hincapié en aquéllos aspectos que pueden ser mejorados para incrementar la robustez y exactitud de la metodología. Se determinan rangos adecuados para el ajuste de los parámetros de la aproximación y su comportamiento en situaciones prácticas. Se propone además un procedimiento de ajuste automático de estos parámetros a fin de simplificar la aplicación del método y reducir la dependencia de factores como el tipo de problema y la intervención del usuario, sin afectar la flexibilidad de la técnica sin malla. A continuación se aborda el esquema de solución de las ecuaciones del flujo. La discretización de las mismas se lleva a cabo siguiendo métodos estándar, pero aprovechando las características de la técnica sin malla. Con el objetivo de abordar problemas prácticos, se pone énfasis en la robustez y eficiencia de la implementación numérica (se propone además una simplificación del procedimiento de solución). El comportamiento del esquema se estudia en detalle para evaluar su potencial y se analiza su exactitud, coste computacional y escalabilidad, todo ello en comparación con un método convencional basado en Elementos Finitos. Finalmente se presentan distintas aplicaciones y extensiones de la metodología desarrollada. Los ejemplos numéricos pretenden demostrar las capacidades del método y también aprovechar las ventajas de la metodología sin malla en áreas en que la misma puede ser de especial interés. Los problemas tratados incluyen, entre otras características, el refinamiento automático de la discretización, la presencia de fronteras móviles e interacción fluido-estructura, como así también una aplicación preliminar a flujos compresibles de alto número de Reynolds. Los resultados obtenidos muestran una exactitud satisfactoria. Además, en comparación con una técnica similar basada en Elementos Finitos, demuestran ser competitivos en términos del coste computacional. Esto indica que las ventajas de la metodología sin malla pueden ser explotadas con eficiencia, lo cual constituye un buen punto de partida para el desarrollo de ulteriores aplicaciones.