El mecanizado de metal es un proceso en el que una capa delgada de metal se retira por una herramienta en forma de cuña de un cuerpo grande. El corte es un complejo de fenómenos físicos en los que la fricción, bandas de cizalla adiabáticas, calentamiento excesivo, grandes deformaciones y de alta velocidad de las herramientas están presentes. La geometría de la herramienta, ángulo de ataque y la velocidad de corte juegan un papel importante en la morfología de la viruta, las fuerzas, el consumo de energía y desgaste de la herramienta de corte. El objetivo principal del trabajo es contribuir precisamente a resolver algunos de los problemas descritos anteriormente a través de la extensión del PFEM a los problemas termo-mecánicos en mecánica de sólidos que implican grandes deformaciones y rotaciones, múltiples contactos y generación de nuevas superficies, con el foco principal en la simulación numérica de procesos de corte de metal. El problema termomecánico, formulado en el marco de la mecánica de medios continuos, se integra usando un esquema isotérmico junto con esquemas implícitos, semi-explícito y Implex. La herramienta ha sido discretizado utilizando un elemento finito triangular de tres nodos estándar. La pieza se discretizado utilizando un elemento finito desplazamiento presión mixta para hacer frente a la condición de incompresibilidad impuesto por la plasticidad. El elemento finito mixto se ha estabilizado mediante la proyección polinómica Presión, aplicado inicialmente en la literatura para la ecuación de Stokes. El comportamiento de la herramienta se describe usando un modelo constitutivo hiperelástico Neo Hookean. El comportamiento de la pieza de trabajo se describe usando un modelo isotrópico, con elastoplasticidad j2 y con tres funciones diferentes que se utilizan para describir el endurecimiento por deformación, endurecimiento de la velocidad de deformación y el ablandamiento térmico de diferentes materiales bajo una amplia variedad de condiciones de corte. La fricción en la interfaz de la herramienta-viruta se modela utilizando la fricción ley Norton-Hoff. La transferencia de calor en la interfase herramienta-viruta incluye la transferencia de calor por conducci{on y por fricción. Para validar la formulación desplazamiento presión mixto propuesto, se presentan tres problemas de referencia (la membrana de la tensión normal de Cook, la prueba de impacto Taylor y una prueba de tracción termomecánica). La división isotérmica-IMPLEX presentada en este trabajo ha sido validado mediante un ensayo de tracción termomecánica. Además, con el fin de explorar las posibilidades del modelo como una herramienta para ayudar en el análisis de los procesos de corte de metal, un conjunto de simulaciones se presentan en este trabajo, entre ellas: corte de una material con tensión de fluencia independiente de la tasa de deformación, cortando utilizando diferentes ángulos de ataque, corte con herramientas de corte deformables incluyendo la fricción y la transferencia de calor, la transición de la continua para la formación de viruta dentada aumento de la velocidad de corte. Además, nuestros resultados muestran que la selección adecuada del esquema global de integración de tiempo puede suponer un ahorro en el tiempo de cálculo hasta 9 veces. Por otra parte, este trabajo presenta un análisis de sensibilidad a las condiciones de corte mediante un diseño de experimentos (DOE). El diseño de experimentos con el llevado a cabo PFEM ha sido comparada con la llevada a cabo con el DoE AdvantaEdge, deforme, Abaqus y experimentos. Los resultados obtenidos con PFEM y otras simulaciones numéricas son muy similares, mientras que, en comparación de las simulaciones numéricas y experimentos muestran algunas diferencias en las variables de salida que dependen de los fenómenos de fricción. Los resultados sugieren que es necesario mejorar la modelización de la fricción en la interfaz de la herramienta-viruta.


Thesis URL