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Rate Independent Perfect Plasticity Model

Material parameters used for this model are,
σy = 200, E = 200e3,K = 0, H = 0. The applied
undamaged stress loading is [0, 800, 0, -800, 0, 800]
and 20 sub steps were used for each step. Figure 1
shows the result. Note that all results are based on
strain driven models.

Material reaches yield limit and starts perfectly plas-
tic behavior at point P1 (0.001,200). As expected,
the Y coordinate equals the yield stress and slope
of this point is 200e3, the Youngs Modulus of the
material. The unloading slope was also found to
match with Youngs Modulus.
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Figure 1: Rate Independent Perfect Plastic Model

Rate Independent Linear Isotropic Model

Same material parameters used for this model
are, σy = 200, E = 200e3, H = 0. The isotropic
hardening modulus K was kept as 50e3. The applied
undamaged stress loading is same as before i.e. [0,
800, 0, -800, 0, 800] and 20 sub steps were used for
each step.

Linear hardening implies that the new slope after
yield stress value would be constant, which can be
seen from Figure 2. This slope was found to be
40000, which equals EK

(E+K) . Also, isotropic nature

of hardening implies that elastic limit in tension and
compression should be same. This is observed to be
correct based on Y coordinates of point 2 (0.004,320)
and point P1 (-0.0008,-320).
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Figure 2: Rate Independent Linear Isotropic Model

To study the dependence on hardening, three cases
were simulated (Figure 3) keeping loading same as
before, K=50e3, 100e3 and 200e3. It is expected,
that as hardening modulus increases, the slope after
yield would increase. A trivial case, where K=0 is
perfectly plastic.
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K = 50E3

K = 100E3

K = 200E3

Figure 3: Rate Independent Linear Isotropic Model,
Different K
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Rate Independent Linear Kinematic Model

Same material parameters used for this model
are, σy = 200, E = 200e3,K = 0. The kinematic
hardening modulus H was kept as 50e3. The applied
undamaged stress loading is same as before i.e. [0,
800, 0, -800, 0, 800] and 20 sub steps were used for
each step.

Linear hardening implies that the new slope after
yield stress value would be constant, which can be
seen from Figure 4. This slope was found to be
40000, which equals EH

(E+H) . Also, kinematic nature

of hardening implies that difference of elastic limit in
tension and compression should be same and equal
to 2 ∗ σy (400). This is observed to be correct based
on Y coordinates of point 2 (0.004,320) and point P1
(-0.002,-80).
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Figure 4: Rate Independent Linear Kinematic Model

To study the dependence on hardening, three cases
were simulated (Figure 5) keeping loading same as
before, H=50e3, 100e3 and 200e3. It is expected,
that as hardening modulus increases, the slope after
yield would increase. A trivial case, where H=0 is
perfectly plastic.
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H = 50E3

H = 100E3

H = 200E3

Figure 5: Rate Independent Linear Kinematic Model,
Different H

Rate Independent Nonlinear Isotropic Model

Same material parameters used for this model are,
σy = 200, E = 200e3,K = 0, H = 0, σ∞ = 300, δ =
1e3. Since, only saturation law is to be modeled,
Π′(ξ) = (σ∞ − σy)(1 − e−δξ) without the added Kξ
was used. The applied undamaged stress loading is
[0, 600, 0, -600, 0, 600] and 20 sub steps were used
for each step.

The stress approaches σ∞ (300) nonlinearly when
loaded in compression or tension. Also, once reached,
it would behave as a perfect plastic material as if
σy = σ∞. Also, it is expected that difference be-
tween Y coordinate of point 2 (279.8) and σ∞ should
be same as difference between point 3 (-280.8) and -
σ∞, since σ∞ is the total margin for the yield surface
to expand.
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Figure 6: Rate Independent Nonlinear Isotropic
Model

To study variation with parameter δ, 4 simulations
with δ=0, 2e2, 1e3 and 1e4 were performed. A higher
value would imply that σ∞ is reached at a faster
rate (Figure 7). A trivial case, δ = 0, would imply,
that Π′(ξ) = 0, which implies no isotropic hardening.
Thus, the curve resembles perfect plasticity.
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δ = 0

δ = 2e2

δ = 1e3

δ = 1e4

Figure 7: Rate Independent Nonlinear Isotropic
Model, Different δ
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Rate Independent Nonlinear Isotropic, Linear
Kinematic Model

The parameters used for this model are,
σy = 200, E = 200e3,K = 0, H = 50e3, σ∞ =
300, δ = 1e3. The applied undamaged stress
loading is [0, 600, 0, -600, 0, 600] and 20 sub
steps were used for each step with a convergence tol-
erance of 1e-7 was used for Newton-Raphson method.

As loading increases, this model would approach lin-
ear kinematic hardening model as if σy = σ∞ which
can be seen from Figure 8.
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Figure 8: Rate Independent Nonlinear Isotropic Lin-
ear Kinematic Model

Rate Dependent Perfect Plasticity Model

The parameters used for this model are,
σy = 200, E = 200e3,K = 0, H = 0, η = 1e4.
The applied undamaged stress loading is [0, 600, 0,
-600, 0, 600] time corresponding to these values is [0
1 2 3 4 5] and 20 sub steps were used for each step
making dt=0.05.

The perfect plasticity rate dependent model (Figure
9)allow stress to exceed σy by an amount which is
determined by strain rate and viscosity parameter
η. The dependence of η indicates (10) that at very
low η, rate dependent model becomes equivalent to
rate independent model (Figure 10), where three
simulations were run for η= 0, 1e4 and 3e4. As η
increases, the stagnant value of stress increases.

Another striking difference between this model and
rate independent nonlinear isotropic hardening,
is that even though they both exhibit nonlinear
hardening, in case of rate independent model, the
non linear effect gets over once, the stress reaches
σ∞. But in case of this model, the nonlinearity is
shown every time, the stress exceeds σy.

The effect of changing strain rate was observed with
variation in dt= 0.025, 0.05, 0.1 and 5. It is seen

that the as strain rate decreases (dt increases), the
curve approaches rate independent perfect plasticity
model (Figure 11)
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Figure 9: Rate Dependent Perfect Plasticity Model
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η = 0
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Figure 10: Rate Dependent Perfect Plasticity Model,
Different η
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dt = 5

dt = 0.1

dt = 0.05

dt = 0.025

Figure 11: Rate Dependent Perfect Plasticity Model,
Different dt
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Rate Dependent Linear Isotropic Model

The parameters used for this model are,
σy = 200, E = 200e3,K = 50e3, H = 0. η was
varied from 1e4, 5e4 and 1e5. The applied undam-
aged stress loading is [0, 800, 0, -800, 0, 800] time
corresponding to these values is [0 1 2 3 4 5] and 20
sub steps were used for each step making dt=0.05.

Figure 12 and Figure 13 show stress-strain and
stress-time plots with different η. Similar observa-
tions can be made as that of perfect plasticity case.
The model approached to time independent linear
isotropic model as η becomes lesser. A very high
value of η would make the material perfectly elastic.

Stress-Time graph indicates that materials with high
viscous parameter can resist more load compared to
one with less viscous parameter.
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Figure 12: Rate Dependent Linear Isotropic Model,
Stress-Strain
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Figure 13: Rate Dependent Linear Isotropic Model,
Stress-Time

Rate Dependent Linear Kinematic Model

The parameters used for this model are,
σy = 200, E = 200e3,K = 0, H = 50e3. η was
varied from 1e4, 5e4 and 1e5. The applied undam-
aged stress loading is [0, 800, 0, -800, 0, 800] time
corresponding to these values is [0 1 2 3 4 5] and 20
sub steps were used for each step making dt=0.05.

Figure 14 and Figure 15 show stress-strain and stress-
time plots with different η. Similar observations can
be made as that of rate dependent linear isotropic
case. The model approached to time independent
linear kinematic model as η becomes lesser. A very
high value of η would make the material perfectly
elastic. Also, it is seen from plots that the variation
ofη affects more in case of kinematic hardening
compared to isotropic case. Also, the stress space
is enveloped by two inclined lines which is a typical
scenario in case of kinematic hardening.
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Figure 14: Rate Dependent Linear Kinematic Model,
Stress-Strain

0 1 2 3 4 5
−600

−400

−200

0

200

400

600

Time

S
tr

e
s
s
 (

M
P

a
)

 

 

η = 1E4

η = 5E4

η = 1E5

Figure 15: Rate Dependent Linear Kinematic Model,
Stress-Time
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Rate Dependent Nonlinear Isotropic Model

The parameters used for this model are,
σy = 200, E = 200e3,K = 0, H = 0, δ =
1e3, cnvtol = 1e − 7, η = 1e4. The applied un-
damaged stress loading is [0, 800, 0, -800, 0, 800]
time corresponding to these values is [0 1 2 3 4 5]
and 20 sub steps were used for each step making
dt=0.05.

Figure 16 show stress-strain behavior of rate inde-
pendent and rate dependent model. The maximum
stress that can be taken by the model is higher if it is
a rate dependent model, since the viscous parameter
allows extra allowance for stress to be outside yield
surface. The isotropic nature can be proved by the
fact that the stagnated stress value in the tension
zone is 339.9 and in compression zone it is -338.7.
These values are equal in magnitude, which is a
typical scenario for isotropic models.
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Figure 16: Rate Dependent Nonlinear Isotropic
Model, Comparison

Figure 17 shows that δ helps to raise the maximum
stress that a material can take for a fixed value of
viscous parameter. δ was varied from 1e3, 1e2 to 1.
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Figure 17: Rate Dependent Nonlinear Isotropic
Model, Stress-Time

Rate Dependent Nonlinear Isotropic Linear
Kinematic Model

The parameters used for this model are,
σy = 200, E = 200e3,K = 0, H = 50e3, δ =
1e3, cnvtol = 1e − 7, η = 1e5. The applied undam-
aged stress loading is [0, 400, 800] time corresponding
to these values is [0 1 2] and 20 sub steps were used
for each step making dt=0.05.

Figure 18 and Figure 19 compares the stress-time and
stress-strain response of a rate dependent and rate
independent model. As expected, the rate dependent
model gives more allowance for stress.
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Figure 18: Nonlinear Isotropic Linear Kinematic
Model, Comparison, Stress-Strain
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Figure 19: Nonlinear Isotropic Linear Kinematic
Model, Comparison, Stress-Time
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Appendix - MATLAB Code

File: main.m
5/26/16 2:05 AM C:\Users\Paris Mulye\Desktop\CSM Assignment 2 Backup ...\main.m 1 of 3

clc; clear all

 

%% parameters

sig_y   = 200;      %yield stress

E       = 200e3;    %youngs modulus

K       = 0;        %isotropic hardening modulus

H       = 0;        %kinematic hardening modulus

nsteps  = 20;       %no of sub-steps 

 

%% nonlinearity parameters

isotropic   = 'linear';     %linear or nonlinear

sig_infty   = 300;          %sigma infinity

delta       = 1e3;          %control parameter for q

cnvtol      = 1e-7;         %tolerance NR scheme

 

%% viscosity parameters

viscous = 'no';

eta = 1e4;

time =1*[0:3]; %length of sig and t should be same

 

%% time history calculation

t           = get_time(time,nsteps);

 

%% undamaged stresses, array can be extended

sig         = [0,800,0,-800,0,800];

strain      = get_strain(sig,nsteps,E);

 

%% internal variables

strain_pl       = zeros(1,length(strain));

int_2           = zeros(1,length(strain));

int_3           = zeros(1,length(strain));

 

%% initialize stresses to 0

stress  = zeros(1,length(strain));

 

%% constitutive law loop 

if strcmp(isotropic,'linear') && strcmp(viscous,'no')

    for i = 2:1:length(strain)

        [stress(i), strain_pl(i), int_2(i), int_3(i)] = ...

        constitutive_linear(strain(i),strain_pl(i-1),int_2(i-1),...

        int_3(i-1),E,K,H,sig_y);

    end

elseif strcmp(isotropic,'nonlinear') && strcmp(viscous,'no')

    for i = 2:1:length(strain)

        [stress(i), strain_pl(i), int_2(i), int_3(i)] = ...

        constitutive_nonlinear(strain(i),strain_pl(i-1),...

        int_2(i-1),int_3(i-1),E,K,H,sig_y,sig_infty,delta,cnvtol);

    end

elseif strcmp(isotropic,'linear') && strcmp(viscous,'yes')

   for i = 2:1:length(strain)

        [stress(i), strain_pl(i), int_2(i), int_3(i)] = ...
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5/26/16 2:05 AM C:\Users\Paris Mulye\Desktop\CSM Assignment 2 Backup ...\main.m 2 of 3

        constitutive_linear_visco(strain(i),strain_pl(i-1),int_2(i-1),...

        int_3(i-1),E,K,H,sig_y,eta,t(i),t(i-1));

    end

elseif strcmp(isotropic,'nonlinear') && strcmp(viscous,'yes')

    for i = 2:1:length(strain)

        [stress(i), strain_pl(i), int_2(i), int_3(i)] = ...

        constitutive_nonlinear_visco(strain(i),strain_pl(i-1),...

        int_2(i-1),int_3(i-1),E,K,H,sig_y,sig_infty,delta,cnvtol,...

        eta,t(i),t(i-1));

    end

else

    disp('invalid input')

end

 

%% Post Process

 

% Stress-Strain Plot

figure(1) 

hold on

grid on

box on

index = (0:1:size(sig,2)-1)*nsteps+1;

colormat = ['r','g','b','m','c','r','g','b','m','c'].';

colormat = [colormat;colormat;colormat;colormat];

set(gca,'fontsize',14);

set(gcf,'color','white')

 

counter = 1;

for j = 1:1: length(index)-1

    startp = index(j);

    endp = index(j+1);

    plot(strain(startp:endp),stress(startp:endp),...

      strcat('.','g','-'),'LineWidth',3,'MarkerSize',20);

    text(strain(startp),stress(startp),num2str(j),'FontSize',14);

    xlabel('Strain')

    ylabel('Stress (MPa)','FontSize',14)

    counter = counter + 1;  

end

text(strain(endp),stress(endp),num2str(j+1),'FontSize',14);

 

figure(2) %Stress-Time Plot

hold on

grid on

box on

set(gca,'fontsize',14);

set(gcf,'color','white')

 

counter = 1;

for j = 1:1: length(index)-1

    startp = index(j);

    endp = index(j+1);
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5/26/16 2:05 AM C:\Users\Paris Mulye\Desktop\CSM Assignment 2 Backup ...\main.m 3 of 3

    plot(t(startp:endp),stress(startp:endp),...

      strcat('.','g','-'),'LineWidth',3,'MarkerSize',20);

    text(t(startp),stress(startp),num2str(j),'FontSize',14);

    xlabel('Time')

    ylabel('Stress (MPa)','FontSize',14)

    counter = counter + 1;  

end

text(t(endp),stress(endp),num2str(j+1),'FontSize',14);

 

 

 

File: f.m
5/26/16 2:08 AM C:\Users\Paris Mulye\Desktop\CSM Assignment 2 Backup 5 P...\f.m 1 of 1

function val = f(sig_infty,sig_y,delta,p)

%evaluated the value of the below function for given input parameters

val = (sig_infty-sig_y)*(1-exp(-delta*p));

end

 

File: get time.m
5/26/16 2:07 AM C:\Users\Paris Mulye\Desktop\CSM Assignment 2 Bac...\get_time.m 1 of 1

function t = get_time(time,nsteps)

 

% initialize lengths

len_t  = (length(time)-1)*nsteps+1;

t_short   = zeros(nsteps,length(time)-1);

 

%create a column vector for every substep in sigma

for i=1:1:length(time)-1

    temp            = linspace(time(i),time(i+1),nsteps+1);

    t_short(:,i)    = temp(1:end-1).';

end

 

%combine to create a full sigma

t = [reshape(t_short,1,len_t-1),time(end)];

 

 

File: get strain.m
5/26/16 2:08 AM C:\Users\Paris Mulye\Desktop\CSM Assignment 2 B...\get_strain.m 1 of 1

function strain = get_strain(sig,nsteps,E)

 

% initialize lengths

len_strain  = (length(sig)-1)*nsteps+1;

sig_short   = zeros(nsteps,length(sig)-1);

 

%create a column vector for every substep in sigma

for i=1:1:length(sig)-1

    temp            = linspace(sig(i),sig(i+1),nsteps+1);

    sig_short(:,i)  = temp(1:end-1).';

end

 

%combine to create a full sigma

sig_full = [reshape(sig_short,1,len_strain-1),sig(end)];

 

%get strain from stress

strain = sig_full/E;
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File: constitutive linear.m
5/26/16 2:09 AM C:\Users\Paris Mulye\Desktop\CSM Assig...\constitutive_linear.m 1 of 1

function [s_n1, ep_n1, int_2_n1, int_3_n1] = ...

        constitutive_linear(et_n1,ep_n,int_2_n,int_3_n,E,K,H,sig_y)

    

% variables naming convention

 

% input 

% ep_n      = plastic strain old

% int_2_n   = internal variable 2 old

% int_3_n   = internal variable 3 old

% sig_y     = yield stress

% et_n1     = strain total new

% E,K,H     = Youngs, Isotropic, Kinematic hardening Modulus

 

% output

% s_n1      = stress new

% ep_n1     = plastic strain new

% int_2_n1  = internal variable 2 new

% int_3_n1  = internal variable 3 new

% E_tan     = Elasto-plastic tangent modulus

 

%trial state of internal variables

s_trial         = E*(et_n1-ep_n);

int_2_trial     = int_2_n;

int_3_trial     = int_3_n;

 

%trial state of dependent variables

q_trial         = -K*int_2_trial;

q_bar_trial     = -H*int_3_trial;

 

%yield function

f_trial         = abs(s_trial - q_bar_trial) - sig_y + q_trial;

 

if f_trial <= 0     % elastic loading-unloading or neutral loading    

    s_n1        = s_trial;

    ep_n1       = ep_n;

    int_2_n1    = int_2_trial;

    int_3_n1    = int_3_trial;    

else                % plastic loading    

    gamma       = f_trial/(E+K+H);

    ep_n1       = ep_n + gamma*sign(s_trial - q_bar_trial);

    int_2_n1    = int_2_n + gamma;

    int_3_n1    = int_3_n - gamma*sign(s_trial - q_bar_trial);

    s_n1        = E*(et_n1-ep_n1);

end
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File: constitutive linear visco.m
5/26/16 2:08 AM C:\Users\Paris Mulye\Desktop\CSM...\constitutive_linear_visco.m 1 of 2

function [s_n1, ep_n1, int_2_n1, int_3_n1] = ...

        constitutive_linear_visco(et_n1,ep_n,int_2_n,int_3_n,...

        E,K,H,sig_y,eta,tend,tstart)

    

% variables naming convention

 

% input 

% ep_n      = plastic strain old

% int_2_n   = internal variable 2 old

% int_3_n   = internal variable 3 old

% sig_y     = yield stress

% et_n1     = strain total new

% E,K,H     = Youngs, Isotropic, Kinematic hardening Modulus

 

% output

% s_n1      = stress new

% ep_n1     = plastic strain new

% int_2_n1  = internal variable 2 new

% int_3_n1  = internal variable 3 new

% E_tan     = Elasto-plastic tangent modulus

 

dt = tend-tstart;

 

%trial state of internal variables

s_trial         = E*(et_n1-ep_n);

int_2_trial     = int_2_n;

int_3_trial     = int_3_n;

 

%trial state of dependent variables

q_trial         = -K*int_2_trial;

q_bar_trial     = -H*int_3_trial;

 

%yield function

f_trial         = abs(s_trial - q_bar_trial) - sig_y + q_trial;

 

if f_trial <= 0     % elastic loading-unloading or neutral loading    

    s_n1        = s_trial;

    ep_n1       = ep_n;

    int_2_n1    = int_2_trial;

    int_3_n1    = int_3_trial;    

else                % plastic loading    

    gammadt       = f_trial/(E+K+H+eta/dt);

    ep_n1       = ep_n + gammadt*sign(s_trial - q_bar_trial);

    int_2_n1    = int_2_n + gammadt;

    int_3_n1    = int_3_n - gammadt*sign(s_trial - q_bar_trial);

    s_n1        = E*(et_n1-ep_n1);

end
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File: constitutive nonlinear.m
5/26/16 2:08 AM C:\Users\Paris Mulye\Desktop\CSM As...\constitutive_nonlinear.m 1 of 2

function [s_n1, ep_n1, int_2_n1, int_3_n1] = ...

         constitutive_nonlinear...

         (et_n1,ep_n,int_2_n,int_3_n,E,K,H,sig_y,sig_infty,delta,cnvtol)

    

% variables naming convention

 

% input 

% ep_n      = plastic strain old

% int_2_n   = internal variable 2 old

% int_3_n   = internal variable 3 old

% sig_y     = yield stress

% et_n1     = strain total new

% E,K,H     = Youngs, Isotropic, Kinematic hardening Modulus

% sig_infty = sigma infinity

% delta     = material property

% cnvtol    = convergence tolerance

 

% output

% s_n1      = stress new

% ep_n1     = plastic strain new

% int_2_n1  = internal variable 2 new

% int_3_n1  = internal variable 3 new

% E_tan     = Elasto-plastic tangent modulus

 

% temporary

% D         = derivative calculated at gamma_k

% R         = residual of nonlinear equation

 

%trial state of internal variables

s_trial         = E*(et_n1-ep_n);

int_2_trial     = int_2_n;

int_3_trial     = int_3_n;

 

%trial state of dependent variables

q_bar_trial     = -H*int_3_trial;

q_trial         = -f(sig_infty,sig_y,delta,int_2_trial);

 

%yield function

f_trial         = abs(s_trial - q_bar_trial) - sig_y + q_trial;

 

if f_trial <= 0     % elastic loading-unloading or neutral loading    

        s_n1        = s_trial;

        ep_n1       = ep_n;

        int_2_n1    = int_2_trial;

        int_3_n1    = int_3_trial;

        return

else                %plastic loading

        gamma_k = f_trial/(E+K+H); % some starting value 

        %newton raphson iterations

        while true 

            [D,R]           = new_raph_data(sig_infty,sig_y,E,H,K,...
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                              delta,int_2_n,gamma_k,f_trial);

            %convergence check using the residual

            if abs(R) < cnvtol

                break                

            else

                gamma_k     = gamma_k - R/D;                

            end            

        end

        gamma       = gamma_k;

        %update internal variables

        ep_n1       = ep_n + gamma*sign(s_trial - q_bar_trial);

        int_2_n1    = int_2_n + gamma;

        int_3_n1    = int_3_n - gamma*sign(s_trial - q_bar_trial);

        %update stress

        s_n1        = E*(et_n1-ep_n1);

end  

end 

 

File: new raph data.m
5/26/16 2:07 AM C:\Users\Paris Mulye\Desktop\CSM Assignment ...\new_raph_data.m 1 of 1

function [D,R] = new_raph_data(sig_infty,sig_y,E,K,H,delta,int_2_n,gamma_k,f_trial)

% D = derivative at gamma_k

% R = residual at gamma_k

D = -(E+H)-delta*(sig_infty-sig_y)*exp(-delta*(gamma_k+int_2_n));

f2 = f(sig_infty,sig_y,delta,gamma_k+int_2_n);

f1 = f(sig_infty,sig_y,delta,int_2_n);

R = f_trial - gamma_k*(E+H) - (f2-f1);

end
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File: constitutive nonlinear visco.m
5/26/16 2:08 AM C:\Users\Paris Mulye\Desktop\...\constitutive_nonlinear_visco.m 1 of 2

function [s_n1, ep_n1, int_2_n1, int_3_n1] = ...

         constitutive_nonlinear_visco...

         (et_n1,ep_n,int_2_n,int_3_n,E,K,H,sig_y,sig_infty,delta,cnvtol,...

         eta,tend,tstart)

    

% variables naming convention

 

% input 

% ep_n      = plastic strain old

% int_2_n   = internal variable 2 old

% int_3_n   = internal variable 3 old

% sig_y     = yield stress

% et_n1     = strain total new

% E,K,H     = Youngs, Isotropic, Kinematic hardening Modulus

% sig_infty = sigma infinity

% delta     = material property

% cnvtol    = convergence tolerance

 

% output

% s_n1      = stress new

% ep_n1     = plastic strain new

% int_2_n1  = internal variable 2 new

% int_3_n1  = internal variable 3 new

% E_tan     = Elasto-plastic tangent modulus

 

% temporary

% D         = derivative calculated at gamma_k

% R         = residual of nonlinear equation

 

dt = tend-tstart;

 

%trial state of internal variables

s_trial         = E*(et_n1-ep_n);

int_2_trial     = int_2_n;

int_3_trial     = int_3_n;

 

%trial state of dependent variables

q_bar_trial     = -H*int_3_trial;

q_trial         = -f(sig_infty,sig_y,delta,int_2_trial);

 

%yield function

f_trial         = abs(s_trial - q_bar_trial) - sig_y + q_trial;

 

if f_trial <= 0     % elastic loading-unloading or neutral loading    

        s_n1        = s_trial;

        ep_n1       = ep_n;

        int_2_n1    = int_2_trial;

        int_3_n1    = int_3_trial;

        return

else                %plastic loading

        gamma_k = 0; %some starting value 

13



5/26/16 2:08 AM C:\Users\Paris Mulye\Desktop\...\constitutive_nonlinear_visco.m 2 of 2

        %newton raphson iterations

        while true 

            [D,R]           = new_raph_data_visco(sig_infty,sig_y,E,H,K,...

                              delta,int_2_n,gamma_k,f_trial,eta,dt);

 

            if abs(R) < cnvtol

                break                

            else

                gamma_k     = gamma_k - R/D;                

            end            

        end        

        gamma       = gamma_k;

        ep_n1       = ep_n + gamma*dt*sign(s_trial - q_bar_trial);

        int_2_n1    = int_2_n + gamma*dt;

        int_3_n1    = int_3_n - gamma*dt*sign(s_trial - q_bar_trial);

        s_n1        = E*(et_n1-ep_n1);

end  

end 

 

File: new raph data visco.m
5/26/16 2:06 AM C:\Users\Paris Mulye\Desktop\CSM Assig...\new_raph_data_visco.m 1 of 1

function [D,R] = new_raph_data_visco(sig_infty,sig_y,E,H,K,delta,...

    int_2_n,gamma_k,f_trial,eta,dt)

% D = derivative at gamma_k

% R = residual at gamma_k

D = -(E+H+eta/dt)*dt-delta*dt*(sig_infty-sig_y)*exp(-delta*(gamma_k*dt+int_2_n));

f2 = f(sig_infty,sig_y,delta,gamma_k*dt+int_2_n);

f1 = f(sig_infty,sig_y,delta,int_2_n);

R = f_trial - gamma_k*dt*(E+H+eta/dt) - (f2-f1);

 

end
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