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1 Rate Independent Models

In order to assess the correctness of the models implemented, the path at the stress space

and the stress-strain curve were obtained for di�erent representative loading paths for both

models. The loading paths used were de�ned as follows:

Case 1: α = 900 ; β = −1000 ; γ = 750

Case 2: α = 500 ; β = −500 ; γ = 150

Case 3: α = 600 ; β = −3000 ; γ = 2200

The next sections present the results obtained for those 3 cases for the non-symmetric model

and the tension-only model. For both models it was chosen to use the exponencial hardening-

softening law with H = −0.8, in order to prove its correct implementation.

1.1 Case 1

Figure 1.1 shows the strain path in the stress space and Figure 1.2 shows the corresponding

stress-strain curve for the non-symmetric model. Figures 1.3 and 1.4 show the same results for

the tension-only model. As the results for both models are similar due to the Case evaluated,

the following comments can be applied to the two of them.

The �rst step of the path is a tensile loading process that goes out of the elastic domain

corresponding to the black line in all mentioned Figures. The stress reaches a maximum and

then remains constant (perfect plasticity - no viscous e�ects). The next step represents a

compressive loading process that produces a negative strain inside the elastic domain, repre-

sented in green in all Figures. The third and last step is another tensile loading, but due to

the fact that the material has already been damaged in the �rst step, the maximum stress

reached is lower than before and the slope of the plot is modify by a factor of (1− d).

Figure 1.1: Stress space for the non-symmetric model: Case 1
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Figure 1.2: Stress-strain plot for the non-symmetric model: Case 1

Figure 1.3: Stress space for the tension-only model: Case 1
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Figure 1.4: Stress-strain plot for the only-tension model: Case 1

1.2 Case 2

As before, the behaviour of both models is the same for this chosen path, so the same

comments can be made about both of them. The stress spaces are presented in Figures 1.5

and 1.7 and the corresponding stress-strain curves can be seen in Figures 1.6 and 1.8.

The �rst step of this path is equivalent to the �rst of Case 1, and it is represented by the

black lines in plots 1.5 and 1.6. Steps 2 and 3 are now biaxial instead of uniaxial but their

consequences in terms of elastic behavior of the domain are the same as before, with the only

di�erence being that now the unloading step (step 2) produces a positive strain.

Figure 1.5: Stress space for the non-symmetric model: Case 2
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Figure 1.6: Stress-strain plot for the non-symmetric model: Case 2

Figure 1.7: Stress space for the tension-only model: Case 2
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Figure 1.8: Stress-strain plot for the only-tension model: Case 2

1.3 Case 3

In case 3 there are 3 biaxial loading processes. The �rst step is the same as in the previous

cases, a load that goes out of the elastic domain and produces some damage in the material.

However, for this case there is a di�erence between models for the second step of the path. In

the case of the non-symmetric model, the second step also produces damage in the material as

it lies outside of the compression limit of the domain, as seen in Figure 1.10. In the case of the

tension-only model, as its name says, there is no compression limit so the second step relies

inside the domain. That means that the response is elastic and there is no further damage,

as shown in the plot 1.12. As a remark, if the load in the second step is very close to the

compression limit of the non-symmetric model, then the di�erence between both models will

be smaller and in some cases even hard to notice.

Figure 1.9: Stress space for the non-symmetric model: Case 3
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Figure 1.10: Stress-strain plot for the non-symmetric model: Case 3

Figure 1.11: Stress space for the tension-only model: Case 3
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Figure 1.12: Stress-strain plot for the only-tension model: Case 3
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2 Rate Dependent Models

2.1 E�ect of viscosity η

In the implemented model, the viscosity a�ects how the material behaves outside its elas-

tic domain. In order to visualize the e�ect of the parameter η in the material's response, the

model was run for three values of viscosity (η = 0.4, η = 0.8, η = 1.2) for the same loading

path. The loading path used can be seen in Figure 2.1.

Figure 2.1: E�ect of viscosity η in the stress space

Figure 2.2 shows the e�ect of the viscosity in the stress-strain curve. As it can be seen

in the plot, the area surrounded by the curve is larger for bigger η, which means that more

energy is dissipated for more viscous materials. Also, for the same strain, the more viscous

the material, the higher value of maximum stress it can reach.

Figure 2.2: E�ect of viscosity η in the stress-strain curve
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2.2 E�ect of strain rate ε̇

The strain rate can be modi�ed by changing the integration time in the provided console.

To study the e�ect of the strain rate in the behavior of the material, several di�erent times

were considered: t = 1, t = 10, t = 20, t = 30. The loading path used was the same than

the one used for testing the e�ect of viscosity, seen in Figure 2.1. That means that the same

amount of load will be applied during di�erent time periods.

Figure 2.3: E�ect of the strain rate ε̇ in the stress-strain curve

Figure 2.3 shows the e�ect that the strain rate has in the stress-strain curve. As it could

be expected, the strain rate has no in�uence inside the elastic domain. However, it does have

an e�ect when viscosity plays its role. As it can be seen in the graph, the higher the �nal

time (for the same loading path) the smoother the curve. This means that the material is

taking the same amount of load in di�erent time windows, and the material behaves in a more

viscous way for longer time windows.

2.3 E�ect of integration parameter α

The parameter α controls the integration scheme used in the model, with α = 1 for implicit

(backward) Euler, α = 0.5 for Crank-Nicholson and α = 0 for explicit (forward) Euler. The

Crank-Nicholson scheme is unconditionally stable and the Euler methods are conditionally

stable. The stability condition is specially critical for the explicit Euler scheme.

2.3.1 On the stress-strain curves

Figure 2.4 shows the results in the stress-strain curve using di�erent values of α for the

same loading path used in 2.1. The values of α used were 0, 0.25, 0.5, 0.75 and 1. All

schemes are stable except for the one integrated using the explicit Euler scheme (α = 0), that
shows spurious oscillations that are not representative of the actual behavior. This could be

stabilized by using smaller time steps in each part of the loading path.
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Figure 2.4: E�ect of the integration parameter α in the stress-strain curve

2.3.2 On the algorithmic constitutive operator

Another way of visualizing the e�ect of the di�erent integration schemes is by plotting the

algorithmic tangent operator for each of the values of α stated previously. Figure 2.5 shows

the results obtained using the same loading path as in the previous sections.

As for the stress-strain curves, it is easy to see that the explicit Euler scheme is unstable

because it presents numerical oscillations that are not a good representation of the actual

material's behavior.

Figure 2.5: E�ect of the integration parameter α in the C11 component of the tangent operator
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APPENDIX

The code developed for this assignment is attached in this Appendix. Only the lines of

the provided functions that were modi�ed are included here for practicity purposes.

Damage_main

1 % INITIALIZING (i = 1) !!!!
2 i = 1 ;
3 r0 = sigma_u/sqrt(E);
4 hvar_n(5) = r0; % r_n
5 hvar_n(6) = r0; % q_n
6 eps_n1 = strain(i,:) ;
7 sigma_n1 =ce*eps_n1'; % Elastic
8 sigma_v{i} = [sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0 ...

sigma_n1(4)];
9

10 nplot = 4 ;
11 vartoplot = cell(1,totalstep+1) ;
12 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
13 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
14 vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable (d)
15 %vartoplot{i}(4) = C_tan(1,1);
16 for iload = 1:length(istep)
17 % Load states
18 for iloc = 1:istep(iload)
19 i = i + 1 ;
20 TIMEVECTOR(i) = TIMEVECTOR(i-1)+ ∆_t(iload) ;
21 % Total strain at step "i"
22 % ------------------------
23 eps_n1 = strain(i,:) ;
24 % DAMAGE MODEL
25 if viscpr ==1
26 eps_n = strain(i-1,:);
27 [sigma_n1,hvar_n,aux_var, C_tan] = ...

rmap_dano2(eps_n,eps_n1,∆_t,hvar_n,Eprop,ce);
28 else
29 [sigma_n1,hvar_n,aux_var] = ...

rmap_dano1(eps_n1,hvar_n,Eprop,ce,MDtype,n);
30 end
31 % PLOTTING DAMAGE SURFACE
32 if(aux_var(1)>0)
33 hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), ...

'r:',MDtype,n );
34 set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1) ...

;
35 end
36

37 % GLOBAL VARIABLES
38 % Stress
39 % ------
40 m_sigma=[sigma_n1(1) sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 ...

0 sigma_n1(4)];
41 sigma_v{i} = m_sigma ;
42

43 % VARIABLES TO PLOT (set label on cell array LABELPLOT)
44 % ----------------
45 vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q)
46 vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)
47 vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5) ; % Damage variable (d)
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48 %vartoplot{i}(4) = C_tan(1,1);
49 end
50 end

Dibujar_criterio_dano1

1 elseif MDtype==2
2 limitINF = -pi/2*0.99;
3 limitSUP = pi*0.99;
4 tetha=[limitINF:0.01:limitSUP];
5 % RADIUS
6 D=size(tetha); % Range
7 m1=cos(tetha); %
8 m2=sin(tetha); %
9 Contador=D(1,2); %

10

11 radio = zeros(1,Contador) ;
12 s1 = zeros(1,Contador) ;
13 s2 = zeros(1,Contador) ;
14

15 for i=1:Contador
16 radio(i)= q/sqrt([m1(i)*(m1(i)>0) m2(i)*(m2(i)>0) 0 ...

nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ...
17 nu*(m1(i)+m2(i))]');
18

19 s1(i)=radio(i)*m1(i);
20 s2(i)=radio(i)*m2(i);
21

22 end
23 hplot =plot(s1,s2,tipo_linea);
24

25 elseif MDtype==3
26

27 tetha=[0:0.01:2*pi];
28

29 % RADIUS
30 D=size(tetha); % Range
31 m1=cos(tetha); %
32 m2=sin(tetha); %
33 Contador=D(1,2); %
34

35

36 radio = zeros(1,Contador) ;
37 s1 = zeros(1,Contador) ;
38 s2 = zeros(1,Contador) ;
39

40

41 for i=1:Contador
42 tetha_aux = (m1(i)*(m1(i)>0) + m2(i)*(m2(i)>0))/(abs(m1(i)) + ...

abs(m2(i))) ;
43 radio(i)= q/sqrt([m1(i) m2(i) 0 nu*(m1(i)+m2(i))]*ce_inv*[m1(i) ...

m2(i) 0 ...
44 nu*(m1(i)+m2(i))]')/(tetha_aux + ((1 - tetha_aux)/n));
45

46 s1(i)=radio(i)*m1(i);
47 s2(i)=radio(i)*m2(i);
48

49 end
50 hplot =plot(s1,s2,tipo_linea);
51

52 end
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53 return

Modelos_de_dano1

1 function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Defining damage criterion surface %
4 % %
5 % %
6 % MDtype= 1 : SYMMETRIC %
7 % MDtype= 2 : ONLY TENSION %
8 % MDtype= 3 : NON-SYMMETRIC %
9 % %

10 % %
11 % OUTPUT: %
12 % rtrial %
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14

15 if (MDtype==1) % Symmetric
16 rtrial= sqrt(eps_n1*ce*eps_n1') ;
17

18 elseif (MDtype==2) % Only tension
19 rtrial = sqrt(eps_n1.*(eps_n1>0)*ce*eps_n1');
20

21 elseif (MDtype==3) % Non-symmetric
22 s_n1 = ce*eps_n1';
23 s1=s_n1(1); s2=s_n1(2);
24 tetha_aux = (s1*(s1>0) + s2*(s2>0))/(abs(s1)+abs(s2));
25 rtrial = (tetha_aux +(1 - tetha_aux)/n)* sqrt(eps_n1*ce*eps_n1');
26 end
27 return

Rmap_dano1

1 else
2 % Exponential
3 %if H>0
4 dqdr = H*((inf_q - r_n)/r_n)*exp(H*(1-(r_n1/r_n)));
5 q_n1 = q_n + dqdr*∆_r;
6 %elseif H<0
7 %dqdr = H*((zero_q - r_n)/r_n)*exp(H*(1-(r_n1/r_n)));
8 %q_n1 = q_n + dqdr*∆_r;
9 %end

10 end
11

12 if(q_n1<zero_q)
13 q_n1=zero_q;
14 elseif (q_n1>inf_q) %Acotar r por arriba
15 q_n1 = inf_q;
16 end
17 else
18 % Elastic load/unload
19 fload=0;
20 r_n1= r_n ;
21 q_n1= q_n ;
22 end
23
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24 % Damage variable
25 dano_n1 = 1.d0-(q_n1/r_n1);
26

27 % Computing stress
28 sigma_n1 =(1.d0-dano_n1)*ce*eps_n1';
29

30 %Updating historic variables
31 hvar_n1(5)= r_n1 ;
32 hvar_n1(6)= q_n1 ;
33

34 % Auxiliar variables
35 aux_var(1) = fload;
36 aux_var(2) = q_n1/r_n1;

Rmap_dano2

1 if(rtrial_alpha > r_n)
2 fload=1;
3 %Loading
4 ∆_r=rtrial_alpha-r_n;
5 r_n1= (eta-∆_t*(1-alpha))/(eta+alpha*∆_t)*r_n + ...
6 ∆_t/(eta+alpha*∆_t)*rtrial_alpha ;
7 if hard_type == 0
8 % Linear hardening
9 q_n1= q_n+ H*∆_r;

10 else
11 % Exponential hardening
12 dqdr = H*(q_inf - r_n)/r_n*exp(H*(1-r_n1/r_n));
13 q_n1 = q_n + dqdr*∆_r;
14 end
15 % Restrict value to q_infinite if needed
16 if(q_n1<zero_q)
17 q_n1=zero_q;
18 elseif (q_n1 > q_inf)
19 q_n1=q_inf;
20 end
21 else
22 %Elastic load/unload
23 fload=0;
24 r_n1= r_n ;
25 q_n1= q_n ;
26 end
27

28 % Damage variable
29 dano_n1 = 1.d0-(q_n1/r_n1);
30

31 % Computing stress
32 sigma_n1 =(1.d0-dano_n1)*ce*eps_n1';
33

34 % Algorithmic tangent operator
35 if (rtrial_alpha > r_n)
36 sigma_eff = ce*eps_n1'; %effective stress
37 C_tan = (1-dano_n1)*ce + ...
38 (alpha*∆_t)/((eta+alpha*∆_t)*rtrial_n1)*...
39 ((H*r_n1-q_n1)/r_n1^2)*(sigma_eff'*sigma_eff);
40 %Only linear case is considered
41 else
42 C_tan = (1-dano_n1)*ce ;
43 end
44

45 % Updating historic variables
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46 hvar_n1(5)= r_n1 ;
47 hvar_n1(6)= q_n1 ;
48

49 % Auxiliar variables
50 aux_var(1) = fload;
51 aux_var(2) = q_n1/r_n1;
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