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1D: Rate Independent /Rate Dependent Plasticity Model 

The cases are solved for material properties, Young’s Modulus E= 400 Pa, Yield stress = 200 

Pa. The value of cyclic loading is taken as, tensile loading is given as 350, tensile unloading  

or compressive loading is taken as -350 and tensile loading of 450 is applied again. The 

ultimate tensile strength in case of non-linear hardening is taken as          Pa. 

Case 1: Perfect Plasticity 

 

 
Figure 1: 1D Rate independent Perfect plasticity 

 
Figure 2: 1D Rate dependent Perfect Plasticity 

for     

The above case is solved for uniaxial cyclic plastic loading/elastic unloading. It can be seen 

from the above figure that for perfect plasticity rate independent case, the tensile loading and 

unloading doesn’t exceed the yield stress limit as it is solved for linear case, and hence 

deformation does not occur.  

But in case of rate dependent case, viscosity is added to the material, hence the material 

behaves slightly nonlinear and stress exceeds the yield stress value of 200 Pa and hence 

deformation takes place during tensile loading and unloading. The value of yield stress keeps 

increasing due to deformation during cyclic loading and unloading. 

For rate dependent case, a plot of stress vs time in figure 3 shows that with increase in 

viscosity parameter, the yield stress value increases at a given time. Figure 4 shows as the 

load rate increases, the slope of deformation increases. When the load rate is decreased i.e. 

when    is increased very high, the material reaches quasi-static condition. When the 

viscosity and load rate are very less, the rate independent model is reproduced from 

rate dependent model as seen in blue curve in figure 3 and red curve in figure 4. 
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Figure 3: 1D Rate dependent stress vs time for 

varying viscosity for perfect plasticity 

 
Figure 4: 1D Rate dependent stress vs strain for 

effect if change in load rate 

 Case 2: Linear isotropic hardening plasticity 

In the linear Isotropic hardening case, It can be observed that with increase in isotropic 

hardening parameter ‘K’ the plasticity of the material decreases. At K=0 the material shows 

perfect plasticity and as K tends to infinity, the slope of plastic deformation increases and the 

size of yield stress increases during tensile/compressive loading and unloading due to plastic 

deformation as shown in the figure below. This means that on further cycles of tensile 

loading and unloading, the material will eventually deform along elastic line of stress strain 

curve. It happens when K=E. Similar behavior is observed for rate dependent linear isotropic 

hardening plasticity case. One case is shown for rate dependent case, at K=100 in figure 4, 

during tensile unloading, the yield stressed is increased upto -300 Pa and is further increased 

during tensile loading again. Unlike in rate independent case, where the yield stress doesn’t 

go beyond 300 during compressive loading at K=100. Also if material is loaded in tension 

past yield, and then loaded in compression, it will not yield in compression until it reaches the 

level past yield that was reached when it was loaded in tension. It is observed that in rate 

dependent case also the slope of deformation increases as the isotropic hardening parameter 

increases. Effect of viscosity and load rate is same as discussed in case of perfect plasticity. 

 
Figure 5: 1D Rate independent linear isotropic 

hardening plasticity 

 
Figure 6: 1D Rate dependent linear isotropic 

hardening plasticity 
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Case 3: Linear kinematic hardening plasticity 

 

 
Figure 7: 1D Rate independent linear kinematic 

hardening plasticity 

 
Figure 8: 1D Rate dependent linear kinematic 

hardening plasticity 

The above figure shows the behavior of material under various kinematic hardening 

parameters. Here the material shows the Bauschinger effect. In rate dependent case, the 

graph is observed by varying the kinematic hardening parameter ‘H’ as H=100, H=200 and 

H=400. It can be observed that, as H increases the material softens on compression. On 

compressive loading, the size of yield stress is observed to decrease and it further decreases 

with further tensile loading. Hence the material deforms elastically in compressive loading 

and further tensile loading. Similar effect is observed in rate independent case. After tensile 

loading, the material deforms and as the yield stress values increases and at the same time the 

yield stress value during compressive loading decreases and further decreases during 

compressive unloading. 

 
Figure 9: Rate dependent varying viscosity for 

linear kinematic hardening plasticity 

 
Figure 10: Rate dependent varying viscosity for 

linear kinematic hardening plasticity stress vs 

time 

The above graph shows the influence of change in viscosity on the material with linear 

kinematic hardening case. It can be seen in stress vs strain curve that as   (viscosity) 

increases, the slope of plastic deformation increases. When   decreases, the yield stress for 

compressive loading decreases. The stress vs time plot shows that increase in   gives higher 

yield stress for the given time. This effect of viscosity is observed in all rate dependent cases. 
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Case 4: Nonlinear isotropic hardening plasticity 

 

 
Figure 11: 1D Rate independent nonlinear 

isotropic hardening plasticity 

 
Figure 12: 1D Rate dependent linear isotropic 

hardening plasticity 

 
Figure 13: 1D Rate dependent linear isotropic hardening plasticity stress vs time 

In the above cases it can be seen that by changing exponential hardening coefficient   the 

material behavior changes. The above graphs are plot for            , and     for 

both, rate independent and rate dependent isotropic hardening case. In both cases it is 

observes that as the exponential hardening coefficient increases, the material tries to deform 

faster and tries to reach             (ultimate tensile strength) faster, but ofcourse does 

not cross it. Rate dependent case shows that it reaches faster to      than rate independent 

case due to the viscous effect of the material. The slope of plastic deformation is more when 

the material is made subject to tensile loading, then the slope decreases when it is given 

further compressive loading. As the value of   is decreased, the material behaves more and 

more plastic. At    , the material shows perfect plasticity.  It can be seen from the rate 

dependent stress vs time plot for varying exponential hardening coefficient that as    

increases, yield stress increases for given time. 
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Case 5: Nonlinear isotropic and linear kinematic hardening plasticity  

 

 
Figure 14: 1D Rate independent  Nonlinear 

isotropic and linear kinematic hardening 

plasticity 

 
Figure 15: 1D Rate dependent Nonlinear isotropic 

and linear kinematic hardening plasticity 

 
Figure 16: 1D rate dependent  Nonlinear 

isotropic and linear kinematic hardening 

plasticity stress vs time varying   

 
Figure 17: 1D rate dependent  Nonlinear isotropic 

and linear kinematic hardening plasticity stress vs 

time varying   

 

In non-linear isotropic and linear kinematic hardening, it can be observed that, change in load 

rate has no effect on the material behavior during tensile loading and unloading. Change in 

viscosity has very less effect on the material behavior. As viscosity increases considerably, 

there is very less increase in yield stress of the material at a given time as seen above. From 

the figure of stress vs time for varying   it can be seen that, change in exponential hardening 

coefficient  , effects the behavior of material. As the value of   increases, the size of yield 

stress increases uniformly at a given time while cyclic tensile loading and unloading. It 

crosses the value of              This is due to linear kinematic hardening. Since there is 

not much effect of viscosity for rate dependent nonlinear isotropic and linear kinematic 

hardening plasticity, the loading/unloading graph for rate dependednt and rate independent 

case shows similar behaviour. 
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3D: Rate Independent /Rate Dependent Plasticity Model 

The cases are solved for material properties, Young’s Modulus E= 400 Pa, Yield stress = 200 

Pa. The ultimate tensile strength in case of non-linear hardening is taken as          Pa. 

Viscosity parameter =5. The value of uniaxial cyclic loading is taken as, 

         [

      
        
         
        

] 

Case 1: Perfect Plasticity 

 

 
Figure 18: 3D Rate independent Perfect 

Plasticity 

 
Figure 19: 3D Rate independent Perfect 

Plasticity 

 
Figure 20: 3D Rate dependent Perfect Plasticity 

 
Figure 21: 3D Rate independent Perfect 

Plasticity 

The above figures show the graphs for perfect plasticity of rate independent and rate 

dependent case. It can be seen that the deviatoric stress saturates as it reaches 2/3
rd

 of yield 

stress. Hence perfect plasticity curve can be observed. But the plot for normal stress strain 

curve shows that on tensile loading the deformation occurs and yield surface increases on 

compressive loading. When stress (11) increases at intersection of yield surface and stress, 

stress (22) and stress (33) starts increasing which allows stress (11) to go beyond yield 

surface. The stress (11) vs strain (11) graphs for rate independent and dependent case with 

viscosity parameter of 5 are shown in the figures above. In the cases below, the material 

behavior would be discussed using deviatoric stress (11) graphs as it is easier to understand. 
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Case 2: Linear isotropic hardening plasticity 

 

 
Figure 22: Rate independent Linear isotropic 

hardening plasticity 

 
Figure 23: Rate independent deviatoric Linear 

isotropic hardening plasticity 

 
Figure 24: Rate dependent Linear isotropic 

hardening plasticity 

 
Figure 25: Rate independent deviatoric Linear 

isotropic hardening plasticity 

 

In the above figure, material is made subject to isotropic hardening parameter K=100, 300 

and 600. It can be seen that as isotropic hardening parameter ‘K’ increases, the slope of 

plastic deformation of the material increases. As K tends to zero, the material tries to behave 

perfectly plastic. If material is loaded in tension past yield, and then loaded in compression, it 

will not yield in compression until it reaches the level past deviatoric yield stress which is 

2/3
rd

 of yield stress that was reached when it was loaded in tension. As K tends to infinity, the 

slope of plastic deformation increases and the size of yield stress increases during uniaxial 

tensile/compressive loading and unloading due to plastic deformation as shown in the figure 

below. This means that on further cycles of tensile loading and unloading, the material will 

eventually deform along elastic line of stress strain curve. 

From the figure given for deviatoric stress vs time, it can be observed that with increase in 

viscosity parameter    the value of deviatoric stress also increases at the given time. A stress 

vs time graph for varying K is also shown. It is observed that increase in isometric parameter, 

the yield stress increases. 
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Figure 26: Rate dependent deviatoric Linear 

isotropic hardening plasticity 

 
Figure 27: Rate dependent  Linear isotropic 

hardening plasticity 

 

Case 3: Linear kinematic hardening plasticity 

 

 
Figure 28: Rate independent  Linear kinematic 

hardening plasticity 

 

Figure 29: Rate independent dev Linear 

kinematic hardening plasticity 

 

Here the material shows the Bauschinger effect. In rate dependent case, the graph is 

observed by varying the kinematic hardening parameter ‘H’ as H=100, H=300 and H=600. It 

can be observed that, as H increases the material softens on compression. On compressive 

loading, the size of yield stress is observed to decrease and it further decreases with further 

tensile loading. Hence the material deforms elastically in compressive loading and further 

tensile loading. Similar effect is observed in rate dependent case. After tensile loading, the 

material deforms and as the yield stress values increases and at the same time the yield stress 

value during compressive loading decreases and further decreases during compressive 

unloading. The variation in viscosity parameter in rate dependent case is gives very less 

effect on material behavior under kinematic hardening. 

In the following figure the behavior of material by change in load rate is shown for rate 

independent normal stress and deviatoric stress case. It can be observed that, as the load rate 

is decreased i.e. when    is increased very high, the material reaches quasi-static condition as 

observed in deviatoric stress plot. 
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Figure 30: Rate independent  Linear 

kinematic hardening plasticity 

 
Figure 31: Rate independent dev Linear kinematic 

hardening plasticity 

 
Figure 32: Rate independent  dev Linear kinematic hardening plasticity stress vs time 

 

Case 4: Non Linear isotropic hardening plasticity 

 

For non-linear isotropic hardening case, rate dependent model is discussed. It can be seen that 

by changing exponential hardening coefficient   the material behavior changes. The below 

graphs are plot for           , and      for both, rate independent and rate dependent 

isotropic hardening case. In both cases it is observes that as the exponential hardening 

coefficient increases, the material tries to deform faster and      tries to reach 2/3
rd

 of 

            (ultimate tensile strength) faster, but ofcourse does not cross it. Rate 

dependent case shows that it reaches faster to      than rate independent case due to the 

viscous effect of the material. The slope of plastic deformation is more when the material is 

made subject to tensile loading, then the slope decreases when it is given further compressive 

loading. As the value of   is decreased, the material behaves more and more plastic. At   

 , the material shows perfect plasticity.  It can be seen from the rate dependent stress vs time 

plot for varying exponential hardening coefficient that as    increases, yield stress increases 

for given time. 
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Figure 33: Rate dependent Non Linear 

isotropic hardening plasticity 
 

 
Figure 34: Rate dependent dev Non Linear 

isotropic hardening plasticity 

 
Figure 35: Rate dependent dev Non Linear 

isotropic hardening plasticity 

 
Figure 36: Rate dependent dev Non Linear 

isotropic hardening plasticity 

 

Case 5: Non Linear isotropic and linear kinematic hardening plasticity 

 

 
Figure 37:  Rate independent Non Linear 

isotropic and linear kinematic hardening 

plasticity 

 
Figure 38: Rate independent dev Non Linear 

isotropic and linear kinematic hardening 

plasticity 

It was observed that, change in load rate has no effect on the material behavior. Change in 

viscosity has very less effect on the material behavior. As viscosity increases considerably, 

there is very less increase in 2/3
rd

 of yield stress of the material for deviatoric stress at a given 
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time. From the figure of stress vs time for varying   it can be seen that, change in exponential 

hardening coefficient  , effects the behavior of material. As the value of   increases, the size 

of yield stress increases uniformly at a given time while cyclic tensile loading and unloading. 

It crosses the value of              This is due to linear kinematic hardening. 

 
Figure 39: Rate independent Non Linear isotropic and linear kinematic hardening plasticity 

 

 

Rate Dependent case for producing perfect plasticity as in rate independent model 

 
Figure 40: Rate dependent case to produce perfect plasticity by varying eta and load rate 

 

The above case is simulated by varying viscosity parameter once it is taken as 0.01 and once 

0.1 and by changing the load rate i.e. by changing the dt=1 and dt=2. Normally the dt was 

taken as 10e-2. At such high dt the material behaves quasi static, and rate dependent case 

behaves as perfectly plastic. Thus decreasing the load rate makes the material plastic. 

Decreasing the viscosity has the similar effect on the material. When viscosity tends to zero, 

the material becomes fully plastic. 
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APPENDIX 

Matlab code for 1D rate dependent/ independent plasticity model 

Code for RI1D.m: 
 

clear all 
clc 
%-----------Material Properties are assumed as follows---------------% 
E=400;               %young's modulus 
yield=200;           %yield stress 
sigma_infy=300; 
delta=1; 
dt=5; 
eta=5;               %viscosity 
K=100;                %Isotropic Hardening 
H=100;                %Kinematic Hardening 
%---------------------------------------------------------------------% 
disp('[1] Rate independent/dependent plasticity Linear case') 
disp('[2] Rate independent/dependent plasticity Nonlinear case') 
method=input('Choose method to be solved:'); 

  
%---------------------Loading-----------------------------------------% 
load=[350;-350;450]; 
load_Steps=size(load,1) ; 
timeSteps=25*ones(1,load_Steps); 
%--------------------------------------------------------------------- 
strain =getStrain(E,load,timeSteps); 

  
if method==1 

  
trail_sigma = zeros(1 , length(strain)); 
trial_zeta = zeros(1 , length(strain)); 
sigma = zeros(1 , length(strain)); 
trial_f = zeros(1 , length(strain)); 
qbar = zeros(1 , length(strain)); 
alpha = zeros(1 , length(strain)); 
eps = zeros(1 , length(strain)); 

  
for n=1 : length(strain)-1 
    trail_sigma(n+1) = E * (strain(n+1) - eps(n)) ; 
    trial_zeta(n+1) = trail_sigma(n+1) - qbar(n) ; 
    trial_f(n+1) = abs(trial_zeta(n+1)) - ( yield + K * alpha(n) ) ; 
    if trial_f(n+1) <= 0 
        sigma(n+1) = trail_sigma(n+1) ; 
        eps(n+1) = eps(n); 
        qbar(n+1) = qbar(n); 
        alpha(n+1) = alpha(n) ; 
    else 
        delta_gamma = ramp_fn(trial_f(n+1)) / (E + K + H + eta / dt) ; 
        sigma(n+1) = trail_sigma(n+1) - delta_gamma * E *sign... 
                                                        (trial_zeta(n+1)) ; 
        eps(n+1) = eps(n) + delta_gamma * sign(trial_zeta(n+1)) ; 
        alpha(n+1) = alpha(n) + delta_gamma ; 
        qbar(n+1) = qbar(n) + delta_gamma * H * sign(trial_zeta(n+1)) ; 

  
    end 
end 

  
elseif method==2 
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[sigma,eps] = RtrnMapViscoExpo(E,H,K,strain,yield,eta,sigma_infy,delta); 

  
end 

  
time=0:dt:(dt*25*load_Steps); 
hold on 
% figure 
plot(strain,sigma,'b .-','LineWidth',2,'MarkerSize',15) 
xlabel('Strain','FontSize',14);  
ylabel('Stress','FontSize',14);  
title('Rate Independent nonlinear isotropic hardening 

plasticity','FontSize',14); 

  
figure 
plot(time,sigma,'r *-','LineWidth',1.5,'MarkerSize',4) 
xlabel('Time','FontSize',14);  
ylabel('Stress','FontSize',14);  
title('Rate Independent nonlinear isotropic hardening 

plasticity','FontSize',14); 

Code for RtrnMapViscoExpo.m  

 

function [sigma,eps] = RtrnMapViscoExpo(E,H,K,strain,yield,eta,... 
                                                        sigma_infy,delta) 

  

  
dt=1e-1; 
trail_sigma =         zeros(1 , length(strain)) ; 
trial_zeta  =         zeros(1 , length(strain)) ; 
sigma       =         zeros(1 , length(strain)) ; 
trial_f     =         zeros(1 , length(strain)) ; 
qbar        =         zeros(1 , length(strain)) ; 
q           =         zeros(1 , length(strain)) ; 
alpha       =         zeros(1 , length(strain)) ; 
eps         =         zeros(1 , length(strain)) ; 
gamma       =         zeros(1 , length(strain)) ; 

  
for n=1 : length(strain)-1 
    trail_sigma(n+1) = E * (strain(n+1) - eps(n)) ; 
    trial_zeta(n+1)  = trail_sigma(n+1) - qbar(n) ; 
    q(n)             = - pi(alpha(n),delta,sigma_infy,yield) ; 
    trial_f(n+1)     = abs(trial_zeta(n+1)) - yield + q(n) ; 
    if trial_f(n+1) <= 0 
        sigma(n+1)   = trail_sigma(n+1) ; 
        eps(n+1)     = eps(n); 
        qbar(n+1)    = qbar(n); 
        alpha(n+1)   = alpha(n) ; 
    else 

  
        gamma(n+1)   = NRMethod(trial_f(n+1),dt,E,H,eta,alpha(n),delta,... 
                                                        sigma_infy,yield); 
        sigma(n+1)   = trail_sigma(n+1) - gamma(n+1)*dt * E *sign... 
                                                        (trial_zeta(n+1)); 
        eps(n+1)     = eps(n) + gamma(n+1)*dt * sign(trial_zeta(n+1)); 
        alpha(n+1)   = alpha(n) + gamma(n+1)*dt; 
        qbar(n+1)    = qbar(n) + gamma(n+1)*dt * H * sign(trial_zeta(n+1)); 

  
    end 
end 
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Code for NRMethod.m : 
function gamma2=NRMethod(sigma_infy,gamma, eta ,delta,dt, yield,H ,alpha , 

E) 
         gamma1=0; 
         rela_Error=1; 

  
while (rela_Error>1e-13) 

     
    gamma2   =    gamma1-g_fn(gamma1,trial_f,dt,E,H,eta,alpha,delta,... 
                  sigma_infy,yield)/Dg_fn(gamma1,dt,E,H,eta,alpha,delta,... 
                  sigma_infy,yield); 

    
    rela_Error =    abs(gamma2-gamma1); 

     
    gamma1   =    gamma2; 

     
end 
end 

Code for getStrain.m: 
function strain=getStrain(E,stress,istep) 

  
stress=[0;stress]; 
strain_step = zeros(size(stress,1),1); 

  
for   I = 1:size(stress,1)-1 

     
    sigma_0 =stress(I+1,1); 
    strain1=sigma_0/E; 
    strain_step(I+1,1)=strain1; 
end 

  
[strain] = calstrain_IN(istep,strain_step); 
end 

 

Code for pi.m: 

 

function value=pi(,delta, yield ,sigma_infy, alpha) 

  
value = (sigma_infy - yield)*(1 - exp(-delta*alpha)) ; 

  
end 

 

Code for calstrain_IN.m: 

 

function [strain]=calstrain_IN(istep,STRAIN) 

  
mstrain = size(STRAIN,2) ; 
strain = zeros(sum(istep)+1,mstrain) ; 
acum = 0 ; 
PNT = STRAIN(1,:) ; 
for iloc = 1:length(istep) 
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    INCSTRAIN = STRAIN(iloc+1,:)-STRAIN(iloc,:); 
    for i = 1:istep(iloc) 
        acum = acum + 1; 
               PNT = PNT + INCSTRAIN/istep(iloc); 
        strain(acum+1,:) = PNT ; 
    end 

  
end 
end 

 

Code for g_fn.m: 
 

function value =g_fn(sigma_infy,gamma, eta ,delta,dt, yield,H ,alpha , E,f) 

  
value = trial_f - gamma * dt * (E+H+eta/dt) -... 
            (pi(alpha + gamma * dt,delta,sigma_infy,yield) -... 
            pi(alpha,delta,sigma_infy,yield)); 
end 

 

Code for Dg.m: 
 

function value = Dg_fn(sigma_infy,gamma, eta ,delta,dt, yield,H ,alpha , E) 

  
value =  - dt * (E + (sigma_infy - yield) * delta *... 
            exp(- delta * (alpha + gamma * dt)) + H + eta / dt); 

         
end 
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Matlab code for 3D rate dependent/ independent plasticity model 

 

Code for 3D.m: 
%clear all 
clc 
young=400; 
nu=0.3; 
yield=200; 

  
mu = young / ( 2 * (1 + nu) ) ; 

  
sigma_infy=300; 
delta=10; 
eta=0.01; 
K=00; 
H=00; 
disp('[1] Linear case') 
disp('[2] Nonlinear case') 
method=input('Choose method:'); 

  

  
load=[0 0 0 0 0 0;350 0 0 0 0 0;-350 0 0 0 0 0;450 0 0 0 0 0]; 
load_Steps=size(load,1)-1 ; 
timeSteps = 25*ones(1,load_Steps); 

  
dt          =   1 ; 

  
strain =getStrain(young,nu,load,timeSteps); 

  

  
[ce] = elastic_tensor(young,nu); 

  
if method==1 

  

  
trail_sigma =   zeros(6 , size(strain,2)) ; 
trial_zeta  =   zeros(6 , size(strain,2)) ; 
sigma       =   zeros(6 , size(strain,2)) ; 
trial_f     =   zeros(1,  size(strain,2)) ; 
qbar        =   zeros(6 , size(strain,2)) ; 
q           =   zeros(1,  size(strain,2)) ; 
eps         =   zeros(6 , size(strain,2)) ; 

  
for n=1 : size(strain,2)-1 

     
    SSS = ce * (strain(:,n+1) - eps(:,n)) ; 
    trail_sigma(:,n+1) =  SSS ; 
    ZZZ = dev_sigma(trail_sigma(:,n+1)) ;  
    trial_zeta(:,n+1) = ZZZ - qbar(:,n); 
    trial_f(n+1) = norm(trial_zeta(:,n+1)) - sqrt(2/3)*( yield - q(n) ) ; 

     
    if trial_f(:,n+1) <= 0 
        eps(:,n+1) = eps(:,n); 
        qbar(:,n+1) = qbar(:,n); 
        q(n+1) = q(n) ; 
        sigma(:,n+1) = trail_sigma(:,n+1); 
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    else 
        delta_gamma = trial_f(:,n+1) / (2*mu + 2/3*K + 2/3*H + eta/dt) ; 
        sigma(:,n+1) = trail_sigma(:,n+1) - delta_gamma * 2*mu * 

unit_vector(trial_zeta(:,n+1)); 
        eps(:,n+1) = eps(:,n) + delta_gamma * 

unit_vector(trial_zeta(:,n+1)) ; 
        qbar(:,n+1) = qbar(:,n) + delta_gamma * 2/3*H * 

unit_vector(trial_zeta(:,n+1)) ; 
        q(n+1) = q(n) - delta_gamma * sqrt(2/3)*K ; 
    end 
end 

     

  

  
elseif method==2 

     
sigma = RtrnMapViscoExpo(ce,H,K,strain,yield,mu,eta,sigma_infy,delta); 

  
end 

  
for I=1:size(strain,2) 

     
    devstress(:,I) = dev_sigma(sigma(:,I)) ; 
end 

  
time=0:dt:(dt*24*load_Steps); 
figure (1) 
hold on 
plot(time(1,:),devstress(1,:),'g *-','Linewidth',2) 
title('Rate Independent deviatoric nonlinear isotropic and linear kinematic 

hardening plasticity','FontSize',14) 
xlabel('time','FontSize',14) % x-axis label 
ylabel('\sigma_{dev} (11)','FontSize',14) % y-axis label 

  
figure (2) 
hold on 
plot(time(1,:),sigma(1,:),'g *-','LineWidth',2) 
title('Rate Independent nonlinear isotropic and linear kinematic hardening 

plasticity','FontSize',14) 
xlabel('time','FontSize',14) % x-axis label 
ylabel('\sigma (11)','FontSize',14) % y-axis label 

  
figure(3) 
hold on 
plot(strain(1,:),devstress(1,:),'g *-','Linewidth',2) 
title('Rate Independent deviatoric nonlinear isotropic and linear kinematic 

hardening plasticity','FontSize',14) 
xlabel('\epsilon (11)','FontSize',14) % x-axis label 
ylabel('\sigma_{dev} (11)','FontSize',14) % y-axis label 

  
figure (4) 
hold on 
plot(strain(1,:),sigma(1,:),'g *-','LineWidth',2) 
title('Rate Independent nonlinear isotropic and linear kinematic hardening 

plasticity','FontSize',14) 
xlabel('\epsilon (11)','FontSize',14) % x-axis label 
ylabel('\sigma (11)','FontSize',14) % y-axis label 

 



CSM Assignment 2  Rupalee Deepak Baldota  

18 
 

Code for unit_vector.m 
function [value] = unit_vector(vector) 

  
value = vector / norm(vector) ; 

  
return 

 

Code for NRM.m 
function gamma2=NRM(trial_f,dt,mu,H,eta,alpha,delta,sigma_infy,yield) 
gamma1=0; 
relErr=1; 

  
while (relErr>1e-13) 

     
    gamma2=gamma1-

g_fn(gamma1,trial_f,dt,mu,H,eta,alpha,delta,sigma_infy,yield)... 
        /Dg_fn(gamma1,dt,mu,H,eta,alpha,delta,sigma_infy,yield); 
    relErr=abs(gamma2-gamma1); 
    gamma1=gamma2; 

    
end 

  
end 

 

Code for chk .m 
 

clc 
clear all 
sigma=[0 0 0 0 0 0; 
       30 10 -8 0 0 0; 
       0 0 8 0 0 0]; 
   bigst=[]; 
n=4; 
for i=1:size(sigma,1)-1 
    tstart=sigma(i,:); 
    tend=sigma(i+1,:); 
    strain=[]; 
for j=1:6 
    strain=[strain,linspace(tstart(j),tend(j),n)']; 
end 
strain=strain(1:end-1,:); 
bigst=[bigst;strain]; 
end 
bigst(end+1,:)=sigma(end,:); 

Code for calstrain_IN .m 
 function [strain]=calstrain_IN(istep,STRAIN) 
  
mstrain = size(STRAIN,2) ; 
strain = zeros(sum(istep)+1,mstrain) ; 
acum = 0 ; 
PNT = STRAIN(1,:) ; 
for iloc = 1:length(istep) 
    INCSTRAIN = STRAIN(iloc+1,:)-STRAIN(iloc,:); 
    for i = 1:istep(iloc) 
        acum = acum + 1; 
               PNT = PNT + INCSTRAIN/istep(iloc); 
        strain(acum+1,:) = PNT ; 



CSM Assignment 2  Rupalee Deepak Baldota  

19 
 

    end 

  
end 
end 
 

Code for dev_sigma .m 
 

function [value]=dev_sigma(stress) 

  
trace = (stress(1) + stress(2) + stress(3)) / 3 ; 

  
value(1) = stress(1) - trace ; 
value(2) = stress(2) - trace ; 
value(3) = stress(3) - trace ; 
value(4) = stress(4) ; 
value(5) = stress(5) ; 
value(6) = stress(6) ; 

  
value = value' ; 

  
return 

 

Code for Dg_fn .m 
 

function value = Dg_fn(gamma,dt,mu,H,eta,alpha,delta,sigma_infy,yield) 

  
value =  - dt * (2*mu + 2/3*(sigma_infy - yield) * delta *... 
            exp(- delta * (alpha + gamma * dt * sqrt(2/3))) + 2/3*H + eta / 

dt); 

         
end 

 

 

Code for elastic_tensor .m 

 
function [ce] = elastic_tensor (E,nu) 
%**************************************************************************

*********** 
%*       Elastic constitutive tensor                                                

%* 
%**************************************************************************

***********  

  

  
%**************************************************************************

*********** 
% 
%*                   mu -------->  Shear modulus                                     

%*                           
%*                                                                                    

%* 
mu = E / ( 2 * (1 + nu) ) ; 
lamda = E * nu /( (1 + nu) * (1 - 2 * nu) ) ; 

  
        ce    = zeros(6,6);             % Init. 
        C1 = lamda + 2 * mu;            
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        ce(1,1) =   C1;                                                                  
        ce(2,2) =   C1; 
        ce(3,3) =   C1; 
        ce(1,2) =   lamda; 
        ce(1,3) =   lamda; 
        ce(2,3) =   lamda; 
        ce(4,4) =   mu; 
        ce(5,5) =   mu; 
        ce(6,6) =   mu; 
        ce(2,1) =   lamda; 
        ce(3,1) =   lamda; 
        ce(3,2) =   lamda; 

  
return 

 

 

Code for g_fn .m 

 
function value = 

g_fn(gamma,trial_f,dt,mu,H,eta,alpha,delta,sigma_infy,yield) 

  
value = trial_f - gamma * dt * (2*mu + 2/3*H + eta/dt) -... 
           sqrt(2/3)*(phi(alpha + gamma * dt * 

sqrt(2/3),delta,sigma_infy,yield) -... 
            phi(alpha,delta,sigma_infy,yield)); 
end 

 

Code for getStrain .m 

 

function strain=getStrain(E,nu,sigma,istep) 

  
ce=elastic_tensor(E,nu); 
bigst=[]; 
n=4; 
for i=1:size(sigma,1)-1 
    tstart=sigma(i,:); 
    tend=sigma(i+1,:); 
    s=[]; 
for j=1:6 
    s=[s,linspace(tstart(j),tend(j),istep(i))']; 
end 
s=s(1:end-1,:); 
bigst=[bigst;s]; 
end 
bigst(end+1,:)=sigma(end,:); 
strain=ce\bigst'; 
end 

 


