
polytechnic university of
catalonia

Master of Science in
Computational Mechanics

Finite Element in Fluids
2D convection-diffusion equation

Assignment

Student: Chiluba Isaiah Nsofu
Lecture : Prof. Pablo Sáez

Date: 2nd April, 2018

Contents
1 2D convection-diffusion equation 2

1.1 The Galerkin Least Square (GLS) implementation 2

2 Rotating Cone problem 7
2.1 Lax-Wendroff + Galerkin . 7
2.2 Lax-Wendroff + Galerkin with lumped mass matrix 8
2.3 Crank-Nicolson + Galerkin formulation 8
2.4 Crank-Nicolson + Galerkin with lumped mass matrix 9
2.5 TG3 formulation . 10
2.6 Two step third order Taylor Galerkin formulation (TG3-2S) 11
2.7 Galerkin formulation + fourth order two-step Taylor-Galerkin method . . 13
2.8 Comparison of the explicit methods . 14
2.9 Comparison of the Implicit methods . 15

1

1 2D convection-diffusion equation

1.1 The Galerkin Least Square (GLS) implementation

The Galerkin Least Square (GLS) method was implemented into the Matlab code as
shown in the figures (1.1) and (1.2) below. This implementation involves the introduction
of the 2D derivatives for the mapping of the 2nd order derivatives. This mapping are a
prerequisite for the GLS method. Implementation of these derivatives was quiet a task
for this part of the assignment. The results obtained using this method are presented in
the sections to follows together with other formulations

Figure 1.1: Implementation of both the 1st and 2nd order derivatives required for the 2D
case

Figure 1.2: Implementation of both the 1st and 2nd order derivatives required for the 2D
case

2

Galerkin, Artificial diffusion, SUPG and GLS
A convection-reaction dominated case withNeumann boundary conditions at the

outlet
‖a‖ = 1 , ν = 0.0004

Figure 1.3: Galerkin Neumann- BC Figure 1.4: Artificial-Neumann

Figure 1.5: SUPG with N- BC, Linear Ele-
ments Figure 1.6: GLS N-BC, Quad Elements

The results for the case where Neumann Boundary conditions are applied on the outlet
are as shown in figures (1.3) (1.4) (1.5) (1.6). As it can be seen in (1.3) the Galerkin
is not able to give very good results since its not able to resolve the discontinuity and
hence it produces spurious oscillations. The artificial diffusion , SUPG and GLS methods
produces better results though both SUPG and GLS introduces less crosswind diffusion

3

A convection-reaction dominated case with Dirichlet boundary conditions at the
outlet

‖a‖ = 1 , ν = 0.0004

Figure 1.7: Galerkin with D- BC, Linear El-
ements

Figure 1.8: Artificial-Dif D-BC, Quad Ele-
ments

Figure 1.9: SUPG with D- BC, Linear Ele-
ments Figure 1.10: GLS D-BC, Quad Elements

Figures (1.7) (1.8) (1.9) (1.10) represents the results once the the Dirichlet BC also
applied at the outlet boundary. This can easily be verified by the presence of a thin
boundary layer at the outlet. The results for the Garlekin method (1.7) shows that this
method produces results with alot of oscillations and hence it does not represent the exact
solution. Both SUPG and GLS produces better results which shows that the stabilization
terms are having an impact of the results. The results produced by the artificial diffusion
method (1.8) shows that the method introduces too much diffusion

4

A convection-reaction dominated case with Dirichlet boundary conditions at the
outlet

‖a‖ = 1/2 , ν = 0.0004 and σ = 1

Figure 1.11: Galerkin with D- BC, Linear
Elements

Figure 1.12: Artificial diffusion D-BC, Lin-
ear Elements

Figure 1.13: SUPG with D-BC, Linear Ele-
ments

Figure 1.14: GLS with D-BC, Linear Ele-
ments

Introducing the reaction term into the convection diffusion equation brings about a
change in the results. This change can be seen by the results presented in figures (1.11)
, (1.12), (1.13) and (1.14). It should be noted that the Dirichlet BC is used at the outlet
boundary. Therefore, comparing the results in these figures with those in figures (1.7)
(1.8) (1.9) (1.9) we can see a very big difference. To elaborate more on the new results
we see that the results produced by the Galerkin method in (1.11) are not accurate as
compared with the results from the stabilized methods in (1.12), (1.13) and (1.14). Note
that the results produced by the artificial diffusion formulation is slightly different from
that of (1.13) and (1.14).

5

A convection-reaction dominated case with Dirichlet boundary conditions at the
outlet

‖a‖ = 0.001 , ν = 0.0004 and σ = 1

Figure 1.15: Galerkin- D-BC, Lin ElementsFigure 1.16: Atificial diff- D-BC, Lin Ele-
ments

A convection-reaction dominated case with Dirichlet boundary conditions at the
outlet

Figure 1.17: SUPG - D- BC, Linear Ele-
ments Figure 1.18: GLS D- BC, Linear Elements

Figures (1.15) , (1.16) ,(1.17) and (1.18) show the results of the convection diffusion
reaction problem with a change in the value of the velocity. From these results we can
see that the results produced by all the formulations ae the very similar. However we can
notice that there thin boundary layer that has been added at the ends of the boundaries.
Hence we can see there is a very big change in these results in comparison with the results
produced in (1.11) , (1.12), (1.13) and (1.14). This change is caused by the new velocity
value.

6

2 Rotating Cone problem
2D homogeneous convection equation with initial condition

2.1 Lax-Wendroff + Galerkin

In order to apply the Lax-Wendroff + Galerkin method to this equation we start with
the Taylor series expansion.

u(tn+1) = u(tn) + ∆tu(tn) +
1

2
∆t2utt(t

n)... (1)

Using
ut + a · ∇u = s (2)

hence

unt = sn − a · ∇un (3)
untt = snt − a · ∇sn + (a · ∇)2un (4)

we know that (un+1 − un)/∆t = unt + untt/2 therefore

∆u

∆t
= −a · ∇un +

∆t

2
(a · ∇)2un + sn +

∆t

2
(snt − a · ∇sn) (5)

Before integrating by the parts for some of the terms in (5) we need to set all the
terms containing the source term to be zero as the equation we are dealing with has
no source term. Therefore the equation reduces to:

∆u

∆t
= −a · ∇un +

∆t

2
(a · ∇)2un (6)

Introducing the test function we obtain the following variational form;(
w,

∆u

∆t

)
= −

(
w, a · ∇un −

∆t

2
(a · ∇)2un

)
(7)

After integration by parts we get(
w,

∆u

∆t

)
= −

(
a · ∇w, un +

∆t

2
(−a · ∇)un

)
+

(
(a · n)w, un +

∆t

2
(−a · ∇)un

)
Γout

(8)

Comparison with the code
Using the code we will get the following terms M, C and K from th terms that are not
in the boundary outlet.

M = CreMassMat(X,T, pospg, wpg,N,Nxi,Neta);

C = CreConvMat(X,T,Conv, pospg, wpg,N,Nxi,Neta);

K = CreStiffMat(X,T,Conv, pospg, wpg,N,Nxi,Neta);

Hence using (8) we see that from the left hand side of the equation

M = (w,∆u) ; where ∆u = un+1 − un (9)
C = (∇w, un) ; (10)
K = (∇w,∇un) ; (11)

7

From the outlet we can get the following terms using the function in the code as

Mo = CreOutMat1(X,T,Conv, elemy0out, [1, 2]);

Co = CreOutMat2(X,T,Conv, elemy0out, [1, 2]);

vo = CreOutV ect(X,T,Conv, elemy0out, [1, 2]);

Therefore using the outlet terms in (8) we get the following

Mo = (w, un)Γout (12)
Co = (w,∇un)Γout ; (13)

Using all the above equations we can see that equation(8) is written in the code as

A = M ; (14)
B = dt ∗ (C − (dt/2) ∗K −Mo+ (dt/2) ∗ Co); (15)
f = dt ∗ (v1 + (dt/2) ∗ (v2− vo)); (16)

2.2 Lax-Wendroff + Galerkin with lumped mass matrix

The derivation of this fornulation is the same as that of Lax-Wendroff + Galerkin for-
mulation, the only difference in this formaultion is that instead of taking all the terms in
the resulting mass matrices we only take the diagonal terms which is of course computa-
tionally cheap. Therefore, just as stated in equations (17),(18) and (19) we see that the
form of Lax-Wendroff + Galerkin with lumped mass matrix is as follows;

A = Md; (17)
B = dt ∗ (C − (dt/2) ∗K −Mod+ (dt/2) ∗ Co); (18)
f = dt ∗ (v1 + (dt/2) ∗ (v2− vo)); (19)

2.3 Crank-Nicolson + Galerkin formulation

To develop this formulation the Galerkin formulation for the θ method is used. Using
the θ time discretization method we know that the solution of un+1 is given using the
formulation below

∆u

∆t
− θ∆ut = unt (20)

Introducing the test function w and multiplying it with 20 we have

(w,
∆u

∆t
)− θ(w,∆ut) = (w, unt) (21)

For the problem at hand we replace ut with a ·∇u which lead to the equation below
once integration by parts has been performed

(w,
∆u

∆t
)− θ(∇w, a ∆u) + θ ((a · n)w,∆u)Γout = (∇w, a un)− ((a · n)w, un)Γout

(22)

To introduce the Crank-Nicolson formulation we set θ = 1
2
in equation 22. This leads

to the following formulation

8

(
w,

∆u

∆t

)
− 1

2
(∇w, a∆u) +

1

2
((a · n)w,∆u)Γout = (∇w, aun)− ((a · n)w, un)Γout (23)

Multiplying every term with ∆t we get the following

(w,∆u)− ∆t

2
(∇w, a∆u) +

∆t

2
((a · n)w,∆u)Γout = ∆t (∇w, aun)−∆t ((a · n)w, un)Γout

(24)
Code representation of the Crank-Nicolson Formulation

Based on the above equation we can identify the parts that correspond to the Crank-
Nicolson + Galerkin formulation in the code.

Firstly considering the left hand side (L.H.S) of the above (24) .
1. The first part on the equation we can find the mass matrix asM = NiNj from (w,∆u)
bearing in mind that ∆u = un+1 − un
2. From the second term we see that discretization process leads to C = ∇w, un

3. The third terms leads to the term Mo = (w, u) on the boundary

Using the above terms and replacing the in (24) we that the term on L.H.S corre-
sponds to the line in the code as follows:

A = M − (dt/2) ∗ C + (dt/2) ∗Mo (25)
Secondly considering the right hand side (R.H.S) of the above (24) .

1.The first term leads to C = ∇w, un

2. The second term leads to Mo = (w, u) on the boundary
Therefore using these terms and replacing the in (24) we that the term on R.H.S corre-
sponds to the line in the code as follows:

B = dt/2 ∗ C +−dt/2 ∗Mo (26)

Therefore, using (25) and (26) together with the term representing the velocity on
the source term, the Crank-Nicolson formulation is given in the code as

A = M − (dt/2) ∗ C + (dt/2) ∗Mo (27)
B = dt/2 ∗ C +−dt/2 ∗Mo (28)
f = dt ∗ v1 (29)

2.4 Crank-Nicolson + Galerkin with lumped mass matrix

The steps leading to the derivation of this formulation are the same as that of Crank-
Nicolson + Galerkin formulation, the only difference in this formulation is that instead
of taking all the terms in the resulting mass matrices we only take the diagonal terms
which is of course computationally cheap. Therefore, just as stated in equations (27) and
(28) we see that the form of Crank-Nicolson + Galerkin with lumped mass matrix is as
follows;

A = Md− (dt/2) ∗ C + (dt/2) ∗Mod (30)
B = dt/2 ∗ C +−dt/2 ∗Mod (31)
f = dt ∗ v1 (32)

9

Where in the code Md and Mod represents the diagonal mass matrices of the main matrix
M and the mass matrix on the boundary term Mo.

2.5 TG3 formulation

To understand the implementation of TG3 we begin with the derivation of the time
discretization then after that we will introduce the spatial discretization. The Taylor
series is used to derive the time discretization as follows

u(tn+1)− u(tn)

∆t
= ut(t

n) +
1

2
∆tutt(t

n) +
1

6
∆t2uttt(t

n)... (33)

since in our problem at hand s=0, h= 0 we have

ut = −a ·∇u (34)
utt = (a ·∇)2u (35)
uttt = (a ·∇)2ut (36)

by inserting ut in (36) as (un+1 − un)/∆t the (33) becomes[
1− ∆t2

6
(a ·∇)2

]
un+1 − un

∆t
= −(a ·∇)un +

∆t

2
(a ·∇)2un (37)

Introducing the test function and integrating by part to get TG3 the above equation
becomes

(
w,

∆u

∆t

)
+

∆t2

6

(
a ·∇w, a ·∇∆u

∆t

)
− ∆t2

6

(
(a · n)w, a ·∇∆u

∆t

)
Γout

=

(
a ·∇w, un − ∆t

2
(a · n)un

)
−

(
(a · n)w, un − ∆t

2
(a · n)un)

)
Γout

(38)

Taking ∆t to the right hand sine in th eabove equation we obtain

(w,∆u) +
∆t2

6

(
a ·∇w, a ·∇∆u

∆t

)
− ∆t2

6

(
(a · n)w, a ·∇∆u

∆t

)
Γout

= ∆t

(
a ·∇w, un − ∆t

2
(a ·∇un)

)
−∆t

(
(a · n)w, un − ∆t

2
(a ·∇un)

)
Γout

(39)

Using (39) we can identify the terms correspond to the TG3 formulation in the code.
This process is carried out as follows.

Firstly we consider the L.H.S of equation (39)
1. The first term leads to M =(w,∆u) where of course ∆u = un+1 − un
2. The seconds terms shows that K = (∇w,∇∆u)
3. The third term leads to Co = (w,∇∆u) on the boundary

Using these terms and replacing them in (39) we can show the terms of the L.H.S
correspond to:

A = M + (dt2/6) ∗ (K − Co) (40)

10

Secondly we consider the R.H.S of equation (39)
1. The first term leads to the discretization of C = (∇w, un) and K= (∇w,∇un)
2. The second term leads to the discretization of Mo = (w, un) and Co = (w,∇un) on
the boundary

These terms can replaced in (39) and grouped together as to represent B as follows;

B = dt ∗ (C − (dt/2) ∗K −Mo+ (dt/2) ∗ Co (41)

Therefore, using (40) and (41) together with the corresponding terms representing
the velocities, TG3 formulation is given in the code as

A = M + (dt2/6) ∗ (K − Co) (42)
B = dt ∗ (C − (dt/2) ∗K −Mo+ (dt/2) ∗ Co (43)
f = dt ∗ ((dt/2)) ∗ (v2− vo) + v1) (44)

2.6 Two step third order Taylor Galerkin formulation (TG3-2S)

The derivation of this formulation follows closely with that of the one step TG3 method.
Here we begin with the two steps shown below

ūn = un +
1

3
∆tunt + α∆t2untt (45)

un+1 = un + ∆tunt +
1

2
∆t2ūntt (46)

Step 1
We start by introducing the test function to the (45) and also we denoting g ut = −a ·∇u
after that we will then perform integration by parts.

(w, ūn − un) = −(w,
∆t

3
(a ·∇un)) + α∆t2(w, (a ·∇)2un) (47)

After integration by parts

(w, ūn − un) =
∆t

3
(a ·∇w, un)− ∆t

3
((a · n)w, un)Γout

− α(a ·∇w, (a ·∇)un) + α(a · nw, (a ·∇)un)Γout

(48)

Using (48) we can write the various terms that can be grouped together when per-
forming the discretization process.
1. The first term on the LHS we see that M= (w, ūn − un)
2. From the first trm in the RHS C = (∇w, un)
3. From the second term on the RHS Mo = (w, un)Γout

4. From the third term K = (∇w,∇un)
5. from the fourth term we see that Co = (w,∇un)

Using these new terms we can write the the terms representing the 1st step in the
code as

A1 = M (49)
B1 = (dt/3) ∗ (C −Mo)− α ∗ dt2 ∗ (K − Co) (50)
f1 = (dt/3) ∗ v1 + α ∗ dt2 ∗ (v2− vo); (51)

11

Step 2

We begin by introducing the test function into (46) and and also we let unt = −a ·∇u

(w, un+1 − un) = −∆t(w, a ·∇un) +
1

2
∆t2(w, (a ·∇)2un)Γout (52)

Carrying out integration by parts on the convective terms

(w, un+1 − un) = ∆t(a ·∇w, un)−∆t((a · n)w, un)Γout

+
1

2
∆t2(a ·∇w, (a ·∇un))− 1

2
∆t2((a · n)w, (a ·∇un))Γout

(53)

By observing equation (53) we can show that the corresponding parts of the code are as
follows;

1. From the LHS we see that we have M= (w, ūn − un)
2. From the first term on the RHS of the equation C = (∇w, un)
3. From the second term on the RHS Mo=(w, un)Γout

4. From the third term on the RHS K = (∇w,∇un)
5. From the fourth term on the RHS Co =(w,∇un)Γout

Therefore using the above terms and replacing them in (53)we can see that

A2 = M (54)
B2 = dt ∗ (C −Mo) (55)
C2 = −(dt2/2) ∗ (K − Co) (56)
f2 = dt ∗ v1− (dt2/2) ∗ (v2− vo) (57)

The final version of the Two-step TG3 is a combination of the resulting terms from
both the first step and the second step. This final form is given as follows.

A1 = M (58)
B1 = (dt/3) ∗ (C −Mo)− α ∗ dt2 ∗ (K − Co) (59)
f1 = (dt/3) ∗ v1 + α ∗ dt2 ∗ (v2− vo) (60)
A2 = M (61)
B2 = dt ∗ (C −Mo) (62)
C2 = −(dt2/2) ∗ (K − Co) (63)
f2 = dt ∗ v1− (dt2/2) ∗ (v2− vo) (64)

It should be noted the above formulation is slightly different from the one in given in
the code. The original lines of code are commented on as shown in the Figure 2.1 below.

12

Figure 2.1: 2-Step TG3 Code implementation

2.7 Galerkin formulation + fourth order two-step Taylor-Galerkin
method

This formulation is given as follows;

ūn = un +
1

3
∆tunt +

1

12
∆t2untt (65)

un+1 = un + ∆tunt +
1

2
∆t2ūntt (66)

The only difference between this formulation and the previously derived two-step TG3
formulation is the value of α been used. In the two-step TG3 method the value of α is
considered to be 1/9 while in the fourth order two-step TG4 formulation α is taken to as
1/12. Therefore instead of go through the same derivation steps as that of TG3 we will
just take the final derivation of the two-step TG3 as shown in (58) to (64) which shows
that the fourth order two-step TG4 method is derived as;

A1 = M (67)
B1 = (dt/3) ∗ (C −Mo)− 1/12 ∗ dt2 ∗ (K − Co) (68)
f1 = (dt/3) ∗ v1 + 1/12 ∗ dt2 ∗ (v2− vo) (69)
A2 = M (70)
B2 = dt ∗ (C −Mo) (71)
C2 = −(dt2/2) ∗ (K − Co) (72)
f2 = dt ∗ v1− (dt2/2) ∗ (v2− vo) (73)

13

2.8 Comparison of the explicit methods

TG2: Maximum = 0.978438 and Minimum = -0.011149

Figure 2.2: TG2 contour plot Figure 2.3: TG2 revolution plot

TG2 / diagonal mass matrix: Maximum = 0.818575 and Minimum = -0.177432

Figure 2.4: TG2/Diag-M contour plot Figure 2.5: TG2/Diag-M revolution plot

TG3 Maximum = 0.983465 Minimum = -0.014839

Figure 2.6: TG3 contour plot Figure 2.7: TG3 revolution plot

Comparing these implicit methods we see that its clear that the formulations with a
consistent mass as shown in figures (2.2) (2.2) and (2.4) (2.5) are more accurate than
the TG2 method with the diagonal mass matrix as can bee seen in (2.4) and (2.5). At
the same time we have noticed that using a formulation with a diagonal mass matrix is
cheaper compared with the formulation with a consistent mass matrix.

14

2.9 Comparison of the Implicit methods

Crank Nicolson formulation with Maximum = 0.994966 Minimum = -0.022970

Figure 2.8: CN contour plot Figure 2.9: CN revolution plot

CN-FD : Maximum = 0.823508 Minimum = -0.210957

Figure 2.10: CN-FD contour plot Figure 2.11: CN-FD revolution plot

TG4 : Maximum = 0.992350 Minimum = -0.017285

Figure 2.12: TG4 contour plot Figure 2.13: TG4 revolution plot

Once again we can notice that from Figures (2.8) (2.9) and (2.12) (2.13), the consistent
mass matrix has a large effect on the accuracy of the method when we those shown in
Figures (2.10) and (2.11) . This change is vital to understand even when the methods
been used are implicit in nature

15

