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1 Problem Statement

1D convection-diffusion equation with constant coefficients and Dirichlet boundary conditions:
aux − νuxx = sx ∈ [0, 1]
u(0) = u0;u(1) = u1
The script main allows us to solve three different examples,as follows

1. s = 0, u0 = 0, u1 = 1

2. s = 1.u0 = 0, u1 = 0

3. s = sin(πx), u0 = 0, u1 = 1

2 Solving problem 1 using Galerkin’s method

The first problem is solved using Galerkin’s method for various convection and diffusion coefficients
and number of elements are varied to observe the behaviour of the Galerkin’s method.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Pe = 0.25 Galerkin

exact

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Pe = 5 Galerkin

exact

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Pe = 5 Galerkin

exact

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

Pe = 1 Galerkin

exact

Case 1 Case 2 Case 3 Case 4
Case 1 a = 1, ν = 0.2, 10 Linear elements Case 2 a = 20, ν = 0.2, 10 Linear elements
Case 3 a = 1, ν = 0.01, 10 Linear elements Case 4 a = 1, ν = 0.01, 50 Linear elements

It is Known that Galerkin Method is good to solve convection-Diffusion problems. But it is also
known that they are not suitable for solving convection dominated problem. To have an equal effects
of convection as well as diffusion in a problem, Peclet number is introduced.
It can be observed that as Peclet No. increases Galerkin method’s approximate solution wavers off from
the exact solution. As it is displayed in the plot 2 and 3 above. And moreover it oscillates along the x
axis. Also, it can be observed that the plots for case 2 and case 3, graph is identical. This is because
the ratio

a

ν
remains constant. Thus, the Pe is same for both case, hence the Galerkin approximate

solution is same for both. In the fourth plot it can be seen that the Galerkin solution matches the
exact solution. This is because of the space width h. For any method it is known that as number of
elements increase (mesh is refined) the solution is improved as h decreases.

3 Comparison between SU, SUPG and GLS

To compare the behavior of the three methods mentioned above, the third problem(main.m) is eval-
uated for the third case mentioned above. Also, the Matlab code for SUPG and GLS are completed
according to the ppt (Steady 1D convection Examples) slide no.30 and 31. The line of code edited are
as follows:



Change done to obtain SUPG code

Change done to obtain GLS code
Also, please note that N2_ig is initiated earlier in the code outside the loop as N2_xi =

referenceElement.N2_xi;. The above methods are also used to solve problem 1 stated above, using
parameters of case 3. But it is clear that the differences between the solutions obtained by different
methods are not apparent. Hence, it is better to use problem 3 as an example to observe differences
in behaviour of individual methods.
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Solution by SUPG method Solution by SU method Solution by GLS method
The three methods are used to get a solution for the problem 3 stated in the problem statement

section. The following graphs are plotted for the approximate and exact solution for each method for
case 3.
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Solution by SUPG method Solution by SU method Solution by GLS method
It is apparent from the plots that the solution given by SUPG and GLS is identical. This is because

the problem stated is 1D, steady state, and also it is given that σ = 0 in the problem. Hence the terms



added for stabilization for SUPG and GLS, after cancelling out remains same, as seen in the code line
45 for both methods. Note that the term N2x_ig will vanish as it is the 2nd order derivative. Since
we are using 1D Linear elements.
The SU solution does not match with the exact solution because it over compensates(soomthens the
solution more than needed). It can be said that diffusion term is dominating. Also, in SU the residual
term is not considered, which is considered in SUPG and GLS, hence they provide a better solution.
For SUPG and GLS it can be seen that the approximate solution matches with the exact nodal solu-
tion, until it over shoots. The approximate solution of SU does match with exact nodal solution, but
it does for SUPG and GLS because they are improved using stabilization methods.

4 Behaviour of SUPG by varying Stabilization Parameter τ

The third problem is solved using the SUPG method. The optimum stabilization parameter is τ =
0.4005. But instead we use τ = 1 and τ = 0.1 (with other parameters as case 3 mentioned earlier).
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Solution by τ = 1 Solution by τ = 0.4005 Solution by τ = 0.1 Solution by τ = 0.01

It is

a fact that the added stabilization parameter is unsymmetrical. As the value of τ increases above the
optimal value the approximate solution is far away from the exact solution. This is because when the
stabilisation parameter is increased from the optimal value, the method over compensates. When the
value of τ decreases from optimal value, it is close to the nodal solution. But as we decrease the value
of τ more and more (τ → 0), this methods behaves as Galerkin method(solution oscillates between
nodes). And it is known that τ = 0 yields Galerkin solution.


