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1 Introduction

This report will cover the 1D usteady state advection equation and 1D usteady state advection-diffusion
equation, seen in (1) and (2) respectively. The first will be studied by solving the propagation of a steep
front problem which different time and space discretization methods, as requested. The second will be
studied by solving the Gaussian Hill problem with different time discretization methods.

ut + aux = s (1)

ut + aux − νuxx = s (2)

2 Unsteady Advection Equation

2.1 Changes in Matlab Routines

This subsection will briefly cover the changes in the MatLab routines in order to implement each time/space
discretization method.

2.1.1 Implementation of Crank-Nicholson + Least Square

The least square WRM formulation of the Crank-Nicholson method in scalar reduced form, applied to
equation (1), can be written as:(

w +
∆t

2
wx,∆u+

a∆t

2
∆ux

)
= −a∆t

(
w +

∆t

2
wx, u

n
x

)
+ ∆t

(
w +

∆t

2
wx, s

n

)
(3)
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Applying the Galerkin formulation (wi = Ni and u =
∑

i ujNj), we have:(
Ni +

∆t

2

dNi

dx
,Nj +

a∆t

2

dNj

dx

)
∆u = −a∆t

(
Ni +

∆t

2

dNi

dx
,
dNj

dx

)
un + ∆t

(
Ni +

∆t

2

dNi

dx
, sn
)

(4)

The code implementation of the matrices to of the equation A∆u = Bu+ f becomes:

2.1.2 Implementation of TG2-2s + Galerkin

The two steps second order Lax-Wendroff method (Richtnger scheme) is defined by the following equations
for each step.

un+ 1
2 = un +

∆t

2
unt (5)

un+1 = un + ∆tu
n+ 1

2
t (6)

Using the governing equation (1), those steps can be further written as:

∆ũ =
∆t

2
(sn − aunx) (7)

∆u = ∆t(sn+ 1
2 − aun+ 1

2
x ) (8)

The application of the WRM followed by integration by parts in previous equations leads to:

(w,∆ũ) =
a∆t

2
(wx, u

n) +
∆t

2
(w, sn) (9)

(w,∆u) = a∆t(wx, u
n+ 1

2 ) + ∆t(w, sn+ 1
2 ) (10)

Applying the Galerkin formulation (wi = Ni and u =
∑

i ujNj), we have:

(Ni, Nj) ∆ũ =
a∆t

2

(
dNi

dx
,Nj

)
un +

∆t

2
(Ni, s

n) (11)

(Ni, Nj) ∆u = a∆t

(
dNi

dx
,Nj

)
un+ 1

2 + ∆t
(
Ni, s

n+ 1
2

)
(12)

The code implementation of the matrices of the equation A∆u = Bu+ f , for the first and second steps,
becomes:
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2.2 Results

The unsteady advection of a steep front is solved with the following setup: a = 1 , ∆x = 2.0 × 10−2

and ∆t = 1.5 × 10−2, which leads to a Courant number C = 0.75. The results for the Crank-Nicholson
(CN), Crank-Nicholson with least square spatial discretization (CN-LS), Lax-Wendroff (LW) and two steps
Lax-Wendroff(LW-2s) at the last time step (t = 0.6s) and C = 0.75 are shown in Figure (1).
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Figure 1: Steep front propagation problem: t =0.6 s and C = 0.75.

From the previous results it can be seen that for C = 0.75 the stability limit of LW and TG2-2s methods
are reached. Also, the least-square spatial integration combined with the CN time integration successfully
removes the spurious oscillations in the Galerkin formulation of the CN method.

The results for the Crank-Nicholson (CN), Crank-Nicholson with least square spatial discretization (CN-
LS), Lax-Wendroff (LW) and two steps Lax-Wendroff(LW-2s) at the last time step (t = 0.6s) and C = 0.75
are shown in Figure (2).

When C is reduced, all four methos behave in a stable way. Same concluions can be drawn for CN and
CN-LS formulatins. When comparing LW with its two steps counterpart (TG2-2s), its superior accuracy
for this Courant number value is noticeable. As Courant is reduced the two-step formulation is expected to
improved its amplification response
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Figure 2: Steep front propagation problem: t =0.6 s and C = 0.50.

3 Unsteady Advection-Diffusion Equation

3.1 Implementation of Adam-Bashforth Method

The Adam-Bashforth is not an auto starting method, thus the first order Euler method is used in first step.
Its WRM formulation, applied in the governing equation (2), has the following form:

(w,∆u) = −∆t [(w, aunx) + (wx, νu
n
x)] + ∆t(w, sn) (13)

After the first time-step, the Adam-Bashforth method starts. ts WRM formulation, applied in the governing
equation (2), has the following form:

(w,∆u) = −3∆t

2
[(w, aunx) + (wx, νu

n
x)] +

∆t

2

[
(w, aun−1

x ) + (wx, νu
n−1
x )

]
+ ∆t(w, sn) (14)

Applying the Galerkin formulation (wi = Ni and u =
∑

i ujNj) in both equations we have:

(Ni, Nj)∆u = −∆t

[
a(Ni,

dNj

dx
) + ν(

dNi

dx
,
dNj

dx
)

]
un + ∆t(Ni, s

n) (15)

(Ni, Nj)∆u = −3∆t

2
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dNj
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) + ν(
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dx
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)

]
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+
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2
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dx
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dx
)

]
un−1 + ∆t(Ni, s

n)

(16)
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The code implementation of the matrices of the equation A∆u = Bu+f using Lagrange multipliers becomes:

3.2 Time Discontinuous Galerkin Formulation

The WR formulation of the homogeneous linear advection-diffusion equation can be written as:∫ ∫
Qn

wh(uht + a · ∇uh − ν∇2uh)dΩdt+

∫
Ω
wh(tn+)(uh(tn+)− uh(tn−))dΩ = 0 (17)

The integration by parts of the second order derivative term leads to:∫ ∫
Qn

wh(uht + a · ∇uh)dΩdt+

∫ ∫
Qn

ν∇wh · ∇uhdΩdt+

−
∫
t

∫
Γ
νwh∇uh · nedΓdt+

∫
Ω
wh(tn+)(uh(tn+)− uh(tn−))dΩ = 0

(18)

Assuming an space-time interpolation such that: uh(x, t) =
∑nnp

B NB(x)[Θ1(t)ũnB+Θ2(t)un+1
B ] and wh =∑nnp

A NA[Θ1(t) + Θ2(t)]. With linear time interpolation such that Θ1 = (tn+1− t)/∆t and Θ2 = (t− tn)/∆t.
We can write equation (18) for each time slab as:

nnp∑
B

(

∫ ∫
Qn

NAΘ1

[
NB

un+1
B − ũnB

∆t
+ (Θ1ũ

n
B + Θ2u

n+1
B )(a · ∇NB)

]
dΩdt+

+

∫ ∫
Qn

ν∇NAΘ1(Θ1ũ
n
B + Θ2u

n+1
B )∇NBdΩdt+

∫
t

∫
Γ
νNBΘ1(Θ1ũ

n
B + Θ2u

n+1
B )∇NB · nedΓdt) = 0

(19)
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nnp∑
B

(

∫ ∫
Qn

NAΘ2

[
NB

un+1
B − ũnB

∆t
+ (Θ1ũ

n
B + Θ2u

n+1
B )(a · ∇NB)

]
dΩdt+

+

∫ ∫
Qn

ν∇NAΘ2(Θ1ũ
n
B + Θ2u

n+1
B )∇NBdΩdt+

∫
t

∫
Γ
νNBΘ2(Θ1ũ

n
B + Θ2u

n+1
B )∇NB · nedΓdt)+

+

∫
Ω
NA

nnp∑
B

NB(ũnB − unB)dΩ = 0

(20)

3.3 Results

The unsteady advection-diffusion of a Gaussian hill is solved with the following setup: a = 1 , ∆x = 1/150.
The time step ∆t = [1/150 1/500], which leads to a Courant number C = [1 0.3]. The diffusion coefficient
ν = (1/3) · [10× 10−3 20× 10−4 10× 10−5], which leads to Pe = [1 5 100]. The results for the Adam-
Bashforth method and Padé R22 at the last time-step (t = 6 s) are compared below.
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Figure 3: Gaussian Hill problem: t = 0.6 s and C = 1.
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As it can be seen, Adam-Bashforth method, being a second order explicit time integration scheme, is
unstable for all Pe numbers, while R22, which is a 4th order implicit scheme has an accurate and stable
behavior for all Pe numbers.

The results for both methods with C = 1 and different Pe values is shown in Figure (4). As Courant
number is reduced, the 2nd order explicit scheme starts to behave stable for Pe higher than 5.The 4th
implicit scheme is even more accurate for lower Courant number.
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Figure 4: Gaussian Hill problem: t = 0.6 s and C = 0.3.
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