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We present a general formulation for analysis of fluid-structure interaction problems
using the particle finite element method (PFEM). The key feature of the PFEM is the
use of a Lagrangian description to model the motion of nodes (particles) in both the

fluid and the structure domains. Nodes are thus viewed as particles which can freely
move and even separate from the main analysis domain representing, for instance, the
effect of water drops. A mesh connects the nodes defining the discretized domain where
the governing equations, expressed in an integral from, are solved as in the standard
FEM. The necessary stabilization for dealing with the incompressibility condition in the
fluid is introduced via the finite calculus (FIC) method. A fractional step scheme for the

transient coupled fluid-structure solution is described. Examples of application of the
PFEM method to solve a number of fluid-structure interaction problems involving large
motions of the free surface and splashing of waves are presented.

Keywords : Particle finite element method; finite element method; fluid-structure inter-
action; finite calculus.

1. Introduction

There is an increasing interest in the development of robust and efficient numerical
methods for analysis of engineering problems involving the interaction of fluids and
structures accounting for large motions of the fluid free surface and the existance
of fully or partially submerged bodies. Examples of this kind are common in ship
hydrodynamics, off-shore structures, spillways in dams, free surface channel flows,
liquid containers, stirring reactors, mould filling processes, etc.

The movement of solids in fluids is usually analyzed with the finite element
method (FEM) [Zienkiewicz and Taylor (2000)] using the so called arbitrary
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Lagrangian-Eulerian (ALE) formulation [Donea and Huerta (2003)]. In the ALE
approach the movement of the fluid particles is decoupled from that of the mesh
nodes. Hence the relative velocity between mesh nodes and particles is used as the
convective velocity in the momentum equations.

The ALE formulation has being used in conjunction with stabilized finite ele-
ment method to derive a number of numerical procedures for fluid-structure inter-
action (FSI) analysis. For instance the deforming-spatial-domain/stabilized space-
time (DSD/SST) [Tezduyar et al. (1992a,b)] formulation has been used for com-
putation of fluid-structure interaction and free-surface flow problems. The Mixed
Interface-Tracaking/Interface-Capturing Technique (MITICT) [Tezduyar (2001)]
was proposed for computation of problems that involve both fluid-structure interac-
tions and free surfaces. The MITICT can in general be used for classes of problems
that involve both interfaces that can be tracked with a moving-mesh method and
interfaces that are too complex or unsteady to be tracked and therefore require an
interface-capturing technique.

Typical difficulties of FSI analysis using the FEM with both the Eulerian and
ALE formulation include the treatment of the convective terms and the incom-
pressibility constraint in the fluid equations, the modelling and tracking of the free
surface in the fluid, the transfer of information between the fluid and solid domains
via the contact interfaces, the modelling of wave splashing, the possibility to deal
with large rigid body motions of the structure within the fluid domain, the efficient
updating of the finite element meshes for both the structure and the fluid, etc.

Most of these problems disappear if a Lagrangian description is used to formulate
the governing equations of both the solid and the fluid domain. In the Lagrangian
formulation the motion of the individual particles are followed and, consequently,
nodes in a finite element mesh can be viewed as moving “particles”. Hence, the
motion of the mesh discretizing the total domain (including both the fluid and
solid parts) is followed during the transient solution.

In this paper we present an overview of a particular class of Lagrangian formu-
lation developed by the authors to solve problems involving the interaction between
fluids and solids in a unified manner. The method, called the particle finite element
method (PFEM), treats the mesh nodes in the fluid and solid domains as particles
which can freely move and even separate from the main fluid domain representing,
for instance, the effect of water drops. A finite element mesh connects the nodes
defining the discretized domain where the governing equations are solved in the
standard FEM fashion. The PFEM is the natural evolution of recent work of the
authors for the solution of FSI problems using Lagrangian finite element and mesh-
less methods [Aubry et al. (2004); Idelsohn et al. (2003a; 2003b; 2004); Oñate et
al. (2003; 2004)].

An obvious advantage of the Lagrangian formulation is that the convective
terms disappear from the fluid equations. The difficulty is however transferred to
the problem of adequately (and efficiently) moving the mesh nodes. Indeed for
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large mesh motions remeshing may be a frequent necessity along the time solution.
We use an innovative mesh regeneration procedure blending elements of different
shapes using an extended Delaunay tesselation [Idelsohn et al. (2003a; 2003c)].
Furthermore, this special polyhedral finite element needs special shape funtions.
In this paper, meshless finite element (MFEM) shape functions have been used
[Idelsohn et al. (2003a)].

The need to properly treat the incompressibility condition in the fluid still re-
mains in the Lagrangian formulation. The use of standard finite element interpo-
lations may lead to a volumetric locking defect unless some precautions are taken.
A number of stabilization finite element procedures aiming to alleviate the lock-
ing problem in incompressible fluids have been proposed and some of them are
listed in [Chorin (1967); Codina (2002); Codina et al. (1998); Codina and Blasco
(2000); Codina and Zienkiewicz (2002); Cruchaga and Oñate (1997; 1999); Donea
and Huerta (2003); Franca and Frey (1992); Hansbo and Szepessy (1990); Hughes
et al. (1986; 1989; 1994); Oñate (1998); Sheng et al. (1996); Tezduyar et al. (1992);
Zienkiewicz and Taylor (2000); Storti et al. (2004)]. A general aim is to use low or-
der elements with equal order interpolation for the velocity and pressure variables.
In our work the stabilization via a finite calculus (FIC) procedure has been cho-
sen [Oñate (2000)]. Recent applications of the FIC method for incompressible flow
analysis using linear triangles and tetrahedra are reported in [Garćıa and Oñate
(2003); Oñate (2004); Oñate et al. (2000; 2004); Oñate and Garćıa (2001); Oñate
and Idelsohn (1998)].

The Lagrangian formulation has many advantages for tracking the motion of
fluid particles in flows accounting for large displacements of the fluid surface as in
the case of breaking waves and splashing of liquids (Figure 1). We note that the
information in the PFEM is typically nodal-based, i.e. the element mesh is mainly
used to obtain the values of the state variables (i.e. velocities, pressure, etc.) at the
nodes. A difficulty arises in the identification of the boundary of the domain from
a given collection of nodes. Indeed the “boundary” can include the free surface in
the fluid and the individual particles moving outside the fluid domain. In our work
the Alpha Shape technique [Edelsbrunner and Mucke (1999)] is used to identify the
boundary nodes.

The layout of the paper is the following. In the next section the basic ideas of
the PFEM are outlined. Next the basic equation for an incompressible flow using
a Lagrangian description and the FIC formulation are presented. Then a fractional
step scheme for the transient solution via standard finite element procedures is
described. Details of the treatment of the coupled FSI problem are given. The
procedures for mesh generation and for identification of the free surface nodes are
briefly outlined. Finally, the efficiency of the particle finite element method (PFEM)
is shown in its application to a number of FSI problems involving large flow motions,
surface waves, moving bodies. etc.
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Fig. 1. (a) Large breaking wave. (b) PFEM results for a large wave hitting a verticall wall in 2D.

2. Rationale of the Particle Finite Element Method

Let us consider a domain containing both fluid and solid subdomains. The moving
fluid particles interact with the solid boundaries thereby inducing the deformation
of the solid which in turn affects the flow motion and, therefore, the problem is
fully coupled.

FSI problems traditionally have been solved using an arbitrary Eulerian-
Lagrangian description (ALE) for the flow equation whereas the structure is mod-
elled with a full Lagrangian formulation. Many examples of applications of this type
of approach are found in the literature. A good review can be found in [Donea and
Huerta (2003); Zienkiewicz and Taylor (2000)].

In the PFEM approach presented here, both the fluid and the solid domains
are modelled using an updated Lagrangian formulation. The finite element method
(FEM) is used to solve the continuum equations in both domains. Hence a mesh
discretizing these domains must be generated in order to solve the governing equa-
tions for both the fluid and solid problems in the standard FEM fashion. We note
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once more that the nodes discretizing the fluid and solid domains can be viewed as
material particles which motion is tracked during the transient solution.

The quality of the numerical solution will obviously depend on the discretization
chosen as in the standard FEM. Adaptive mesh refinement techniques can be used
to improve the solution in zones where large motions of the fluid or the structure
occur.

The Lagrangian formulation allows us to track the motion of each single fluid
particle (a node). This is useful to model the separation of water particles from
the main fluid domain and to follow their subsequent motion as individual particles
with an initial velocity and subject to gravity forces.

In summary, a typical solution with the PFEM involves the following steps.

(1) Discretize the fluid and solid domains with a finite element mesh. The mesh
generation process can be based on a standard Delaunay discretization [George
(1991)] of the analysis domain using an initial collection of points which then be-
come the mesh nodes. Alternatively, the nodes can be created during the mesh
generation process using a front generation method [Irons (1970); Thompson
et al. (1999)].

(2) Identify the external boundaries for both the fluid and solid domains. This is
an essential step as some boundaries (such as the free surface in fluids) may
be severely distorted during the solution process including separation and re-
entering of nodes. The Alpha Shape method [Edelsbrunner and Mucke (2003)]
is used for the boundary definition (see Section 7).

(3) Solve the coupled Lagrangian equations of motion for the fluid and the solid
domains. Compute the relevant state variables in both domains at each time
step: velocities, pressure and viscous stresses in the fluid and displacements,
stresses and strains in the solid.

(4) Move the mesh nodes to a new position in terms of the time increment size.
This step is typically a consequence of the solution process of step 3.

(5) Generate a new mesh if needed. The mesh regeneration process can take place
after a prescribed number of time steps or when the actual mesh has suffered
severe distorsions due to the Lagrangian motion. In our work we use an in-
novative mesh generation scheme based on the extended Delaunay tesselation
(Section 7) [Idelsohn et al. (2003a; 2003b; 2004)].

(6) Go back to step 2 and repeat the solution process for the next time step.

Details of the stabilized Lagrangian FEM for the solution of the fluid equations
using a FIC formulation are presented in the next section. The fractional step
scheme chosen for the transient coupled FSI solution using the FEM and details of
the boundary recognition method and the mesh regeneration process are given in
subsequent sections. Finally some examples of application of the PFEM are given.

In order to complete this introduction, Figure 2 shows a typical example of a
PFEM solution in 2D. The pictures correspond to the analysis of the problem of
breakage of a water column described in Section 10.1. Figure 2a shows the initial grid
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of four node rectangles discretizing the fluid domain and the solid walls. Boundary
nodes identified with the Alpha-Shape method have been marked with a circle.
Figures 2b and 2c show the mesh for the solution at two later times.

(a) (b)

(c)

Fig. 2. Breakage of a water column. (a) Discretization of the fluid domain and the solid walls.
Boundary nodes are marked with circles. (b) and (c) Mesh in the fluid and solid domains at two

different times.

3. Lagrangian Equations for an Incompressible Fluid. FIC
Formulation

The standard infinitessimal equations for a viscous incompressible fluid can be
written in a Lagrangian frame as [Oñate (1998); Zienkiewicz and Taylor (2000)]

Momentum

rmi = 0 in Ω (1)

Mass balance

rd = 0 in Ω (2)
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where

rmi = ρ
∂vi

∂t
+

∂σij

∂xj
− bi , σji = σij (3)

rd =
∂vi

∂xi
i, j = 1, nd (4)

Above nd is the number of space dimensions, vi is the velocity along the ith
global axis (vi = ∂ui

∂t , where ui is the ith displacement), ρ is the (constant) density
of the fluid, bi are the body forces, σij are the total stresses given by σij = sij−δijp,
p is the absolute pressure (defined positive in compression) and sij are the viscous
deviatoric stresses related to the viscosity µ by the standard expression

sij = 2µ
(

ε̇ij − δij
1
3

∂vk

∂xk

)
(5)

where δij is the Kronecker delta and the strain rates ε̇ij are

ε̇ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
(6)

In the above all variables are defined at the current time t (current configura-
tion).

In our work we will solve a modified set of governing equations derived using a
finite calculus (FIC) formulation. The FIC governing equations are [Oñate (1998;
2000; 2004); Oñate et al. (2001)]

Momentum

rmi −
1
2
hj

∂rmi

∂xj
= 0 (7)

Mass balance

rd − 1
2
hj

∂rd

∂xj
= 0 (8)

The problem definition is completed with the following boundary conditions

njσij − ti +
1
2
hjnjrmi = 0 on Γt (9)

vj − vp
j = 0 on Γv (10)

and the initial condition is vj = v0
j for t = t0. The standard summation convention

for repeated indexes is assumed unless otherwise specified.
In Eqs.(7) and (8) ti and vp

j are surface tractions and prescribed velocities on
the boundaries Γt and Γv, respectively, nj are the components of the unit normal
vector to the boundary.

The h′
is in above equations are characteristic lengths of the domain where bal-

ance of momentum and mass is enforced. In Eq.(9) these lengths define the domain
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where equilibrium of boundary tractions is established. Details of the derivation of
Eqs.(7)–(10) can be found in [Oñate (1998; 2000); Oñate et al. (2001)].

Eqs.(7)–(10) are the starting point for deriving stabilized finite element methods
to solve the incompressible Navier-Stokes equations in a Lagrangian frame of refer-
ence using equal order interpolation for the velocity and pressure variables [Idelsohn
et al. (2002; 2003a; 2003b; 2004); Oñate et al. (2003); Aubry et al. (2004)]. Appli-
cation of the FIC formulation to finite element and meshless analysis of fluid flow
problems can be found in [Garćıa and Oñate (2003); Oñate (2000; 2004); Oñate et
al. (2000; 2004); Oñate and Garćıa (2001); Oñate and Idelsohn (1988)].

3.1. Transformation of the mass balance equation. Integral

governing equations

The underlined term in Eq.(8) can be expressed in terms of the momentum equa-
tions. The new expression for the mass balance equation is (see Appendix)

rd −
nd∑
i=1

τi
∂rmi

∂xi
= 0 (11)

with

τi =
3h2

i

8µ
(12)

The τi’s in Eq.(11), when scaled by the density, are termed intrinsic time pa-
rameters. Similar values for τi (usually τi = τ is taken) are used in other works from
ad-hoc extensions of the 1D advective-diffusive problem [Codina et al. (1998); Co-
dina and Blasco (2000); Codina (2002); Codina and Zienkiewicz (2002); Cruchaga
and Oñate (1997; 1999); Donea and Huerta (2003); Franca and Frey (1992); Hansbo
and Szepessy (1990); Hughes et al. (1986; 1989; 1994); Oñate (1998; 2000; 2004);
Sheng et al. (1996); Storti et al. (2004); Tezduyar et al. (1992); Zienkiewicz and
Taylor (2000)].

At this stage it is no longer necessary to retain the stabilization terms in the
momentum equations. These terms are critical in Eulerian formulations to stabilize
the numerical solution for high values of the convective terms. In the Lagrangian
formulation the convective terms dissapear from the momentum equations and the
FIC terms in these equations are just useful to derive the form of the mass balance
equation given by Eq.(11) and can be disregarded there onwards. Consistenly, the
stabilization terms are also neglected in the Neuman boundary conditions (eqs.(9)).

The weighted residual expression of the final form of the momentum and mass
balance equations can be written as∫

Ω

δvirmidΩ +
∫

Γi

δvi(njσij − ti)dΓ = 0 (13)

∫
Ω

q

[
rd −

nd∑
i=1

τi
∂rmi

∂xi

]
dΩ = 0 (14)
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where δvi and q are arbitrary weighting functions equivalent to virtual velocity and
virtual pressure fields.

The rmi term in Eq.(14) and the deviatoric stresses and the pressure terms
within rmi in Eq.(13) are integrated by parts to give∫

Ω

[
δviρ

∂vi

∂t
+ δε̇ij(sij − δijp)

]
dΩ −

∫
Ω

δvibidΩ −
∫

Γt

δvitidΓ = 0 (15)

∫
Ω

q
∂vi

∂xi
dΩ +

∫
Ω

[
nd∑
i=1

τi
∂q

∂xi
rmi

]
dΩ = 0 (16)

In Eq.(15) δε̇ij are virtual strain rates. Note that the boundary term resulting
from the integration by parts of rmi in Eq.(16) has been neglected as the influence
of this term in the numerical solution has been found to be negligible.

3.2. Pressure gradient projection

The computation of the residual terms in Eq.(16) can be simplified if we introduce
now the pressure gradient projections πi, defined as

πi = rmi −
∂p

∂xi
(17)

We express now rmi in Eq.(17) in terms of the πi which then become additional
variables. The system of integral equations is therefore augmented in the necessary
number of equations by imposing that the residual rmi vanishes within the analysis
domain (in an average sense). This gives the final system of governing equation as:∫

Ω

[
δviρ

∂vi

∂t
+ δε̇ij(sij − δijp)

]
dΩ −

∫
Ω

δvibidΩ −
∫

Γt

δvitidΓ = 0 (18)

∫
Ω

q
∂vi

∂xi
dΩ +

∫
Ω

nd∑
i=1

τi
∂q

∂xi

(
∂p

∂xi
+ πi

)
dΩ = 0 (19)

∫
Ω

δπiτi

(
∂p

∂xi
+ πi

)
dΩ = 0 no sum in i (20)

with i, j, k = 1, nd. In Eqs.(20) δπi are appropriate weighting functions and the τi

weights are introduced for symmetry reasons.

4. Finite Element Discretization

4.1. Derivation of the discretized equations

We choose C◦ continuous interpolations of the velocities, the pressure and the
pressure gradient projections πi over each element with n nodes. The interpolations
are written as

vi =
n∑

j=1

Nj v̄
j
i , p =

n∑
j=1

Nj p̄
j , πi =

n∑
j=1

Nj π̄
j
i (21)
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where (̄·)j denotes nodal variables and Nj are the shape functions [Zienkiewicz and
Taylor (2000)]. More details of the mesh discretization process and the choice of
shape functions are given in Section 7.

Substituting the approximations (21) into Eqs.(19–20) and choosing a Galerkin
form with δvi = q = δπi = Ni leads to the following system of discretized equations

M ˙̄v + ḡ − f = 0 (22a)

GT v̄ + Lp̄ + Qπ̄πππππππππππππ = 0 (22b)

QT p̄ + M̂π̄πππππππππππππ = 0 (22c)

where

ḡ =
∫

Ω

BT [s −mp]dΩ (23)

is the internal nodal force vector derived from the momentum equations, s is the
deviatoric stress vector, B is the strain rate matrix and m = [1, 1, 0]T for 2D
problems.

This vector and the rest of the matrices and vectors in Eqs.(22) are assembled
from the element contributions given by (for 2D problems)

Mij =
∫

Ωe

ρNiNjdΩ , ḡi =
∫

Ω

BT
i [s− mp]dΩ , Bi =

⎡
⎢⎢⎢⎢⎣

∂Ni

∂x1
0

0
∂Ni

∂x2
∂Ni

∂x2

∂Ni

∂x1

⎤
⎥⎥⎥⎥⎦

Lij =
∫

Ωe

τk
∂Ni

∂xk

∂Nj

∂xk
dΩ , Q = [Q1,Q2] , Qk

ij =
∫

Ωe

τk
∂Ni

∂xk
NjdΩ

M̂ =
[
M̂1 0
0 M̂2

]
, M̂k

ij =
∫

Ωe

τkNiNjdΩ , Gij =
∫

Ωe

BT
i mNjdΩ

fi =
∫

Ωe

NibdΩ +
∫

Γe
t

NitdΓ , b = [b1, b2]T , t = [t1, t2]T

(24)

with i, j = 1, n and k, l = 1, 2.
As usual the deviatoric stresses sij are related to the strain rates ε̇ij by Eq.(5)
It can be shown that the system of Eqs.(22) leads to a stabilized numerical

solution. For details see [Oñate et al. (2003)].

Remark 1

Eq.(22a) can be written in a more explicit form in terms of the velocity and pressure
variables as

M ˙̄v + Kv̄ − Gp̄− f = 0 (25)
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where

Kij =
∫

Ωe

BT
i DBjdΩ (26)

where D is the constitutive matrix. For 2D problems

D = µ

⎡
⎣ 2 0 0

0 2 0
0 0 1

⎤
⎦ (27)

5. Fractional Step Method for Fluid-Structure Interaction
Analysis

A simple and effective iterative algorithm can be obtained by splitting the pressure
from the momentum equations as follows

v̄∗ = v̄n − ∆tM−1[gn+θ1,j − fn+1] (28a)

v̄n+1,j = v̄∗ + ∆tM−1Gδp̄ (28b)

In Eq.(28a)

gn+θ1,j =
∫

Ωn+θ1,j

BT [sn+θ1,j − αmT pn]dΩ

and α is a variable taking values equal to zero or one. For α = 0, δp ≡ pn+1,j and
for α = 1, δp = ∆p. Note that in both cases the sum of Eqs.(28a) and (28b) gives
the time discretization of the momentum equations with the pressures computed
at tn+1.

In above equations and in the following superindex j denotes an iteration num-
ber within each time step.

The value of v̄n+1,j from Eq.(28b) is substituted now into Eq.(22b) to give

GT v̄∗ + ∆tGT M−1Gδp̄ + Lp̄n+1,j + Qπ̄πππππππππππππn+θ2,j = 0 (29a)

The product GTM−1G can be approximated by a laplacian matrix, i.e.

GTM−1G = L̂ with L̂ij �
∫

Ωe

1
ρ
∇∇∇∇∇∇∇∇∇∇∇∇∇∇T Ni∇∇∇∇∇∇∇∇∇∇∇∇∇∇Nj dΩ (29b)

In the above equations θ1 and θ2 are algorithmic parameters ranging between
zero and one. A discussion of the choice of θ1 and θ2 is given below.

A semi-implicit algorithm can be derived as follows. For each iteration:

Step 1 Compute v∗ from Eq.(28a) with M = Md where subscript d denotes
hereonwards a diagonal matrix.

Step 2 Compute δp̄ and pn+1 from Eq.(29a) as

δp̄ = −(L + ∆tL̂)−1[GT v̄∗ + Qπ̄πππππππππππππn+θ2,j + αLp̄n] (30a)
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The pressure pn+1,j is computed as follows

For α = 0 p̄n+1,j = δp̄
For α = 1 p̄n+1,j = p̄n + δp̄

(30b)

Step 3 Compute v̄n+1,j from Eq.(28b) with M = Md

Step 4 Compute π̄πππππππππππππn+1,j from Eq.(22c) as

π̄πππππππππππππn+1,j = −M̂−1
d QT p̄n+1,j (31)

Step 5 Solve for the movement of the structure due to the fluid flow forces.

This implies solving the dynamic equations of motion for the structure written
as

Msd̈ + Ksd = fext (32)

where d and d̈ are respectively the displacement and acceleration vectors of the
nodes discretizing the structure, Ms and Ks are the mass and stiffness matrices
of the structure and fext is the vector of external nodal forces accounting for the
fluid flow forces induced by the pressure and the viscous stresses. Clearly the main
driving forces for the motion of the structure is the fluid pressure which acts as
normal a surface traction on the structure. Indeed Eq.(32) can be augmented with
an appropriate damping term. The form of all the relevant matrices and vectors
can be found in standard books on FEM for structural analysis [Zienkiewicz and
Taylor (2000)].

Solution of Eq.(32) in time can be performed using implicit or fully explicit
time integration algorithms. In both cases the values of the nodal displacements,
velocities and accelerations of the structure at tn+1 are found for the jth iteration.

Step 6

Update the mesh nodes in a Lagrangian manner. From the definition of the velocity
vi = ∂ui

∂t it is deduced.

xn+1,j
i = xn

i + v̄n+1,j
i ∆t (33)

Step 7

Generate a new mesh. This can be effectively performed using the procedure de-
scribed in Section 6.

Step 8

Check the convergence of the velocity and pressure fields in the fluid and the dis-
placements strains and stresses in the structure. If convergence is achieved move to
the next time step, otherwise return to step 1 for the next iteration with j +1 → j.

Despite the motion of the nodes within the iterative process, in general there is
no need to regenerate the mesh at each iteration. A new mesh is typically generated
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after a prescribed number of converged time steps, or when the nodal displacements
induce significant geometrical distorsions in some elements. In the examples pre-
sented in the paper the mesh in the fluid domain has been regenerated at each time
step.

The boundary conditions are applied as follows. No condition is applied in the
computation of the fractional velocities v∗ in Eq.(28a). The prescribed velocities
at the boundary are applied when solving for v̄n+1,j in step 3. The prescribed
pressures at the boundary are imposed by making the pressure increments zero
at the relevant boundary nodes and making p̄n equal to the prescribed pressure
values.

Details of the treatment of the contact conditions at the solid-fluid interface are
given in Section 8 [Idelsohn et al. (2004)].

Note that solution of steps 1, 3 and 4 does not require the solution of a system
of equations as a diagonal form is chosen for M and M̂. The whole solution process
within a time step can be linearized by choosing θ1 = θ2 = 0 and now the iteration
loop is no longer necessary. The implicit solution for θ1 = θ2 = 1 is however very
effective as larger time steps can be used. This requires some iterations within steps
1–8 until converged values for the fluid and solid variables and the new position of
the mesh nodes at time n + 1 are found.

In the examples presented in the paper the time increment size has been chosen
as

∆t = min(∆ti) with ∆ti =
|v|

hmin
i

(34)

where hmin
i is the distance between node i and the closest node in the mesh.

Remark 2

Although not explicitely mentioned for θ1 = 1 all matrices and vectors in Eqs.(28)–
(32) are computed at the final configuration Ωn+1,j . This means that the integration
domain changes for each iteration and, hence, all the terms involving space deriva-
tives must be updated at each iteration. This problem dissapears if Ωn is taken as
the reference configuration (θ1 = 0) as this remains fixed during the iteration. The
penalty to pay in this case, however, is the evaluation of the Jacobian matrix at
each iterations [Aubry et al. (2004)].

6. Treatment of Contact Between Fluid and Solid Interfaces

The condition of prescribed velocities or pressures at the solid boundaries in the
PFEM are applied in strong form to the boundary nodes. These nodes might belong
to fixed external boundaries or to moving boundaries linked to the interacting
solids. In some problems it is useful to define a layer of nodes adjacent to the
external boundary in the fluid where the condition of prescribed velocity is imposed.
These nodes typically remain fixed during the solution process. Contact between
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water particles and the solid boundaries is accounted for by the incompressibility
condition which naturally prevents the penetration of the water nodes into the solid
boundaries. This simple way to treat the water-wall contact is another attractive
feature of the PFEM formulation.

7. Generation of a New Mesh

One of the key points for the success of the Lagrangian flow formulation described
here is the fast regeneration of a mesh at every time step on the basis of the
position of the nodes in the space domain. In our work the mesh is generated
using the so called extended Delaunay tesselation (EDT) presented in [Idelsohn et
al. (2003a; 2003c; 2004)]. The EDT allows one to generate non standard meshes
combining elements of arbitrary polyhedrical shapes (triangles, quadrilaterals and
other polygons in 2D and tetrahedra, hexahedra and arbitrary polyhedra in 3D) in a
computing time of order n, where n is the total number of nodes in the mesh (Figure
3). The C◦ continuous shape functions of the elements can be simply obtained
using the so called meshless finite element interpolation (MFEM). Details of the
mesh generation procedure and the derivation of the MFEM shape functions can
be found in [Idelsohn et al. (2003a; 2003c; 2004)].

Once the new mesh has been generated the numerical solution is found at each
time step using the fractional step algorithm described in the previous section.

The combination of elements with different geometrical shapes in the same mesh
is one of the innovative aspects of the Lagrangian formulation presented here.

Fig. 3. Generation of non standard meshes combining different polygons (in 2D) and polyhedra
(in 3D) using the extended Delaunay technique.



The particle finite element method. An overview 15

8. Identification of Boundary Surfaces

One of the main tasks in the PFEM is the correct definition of the boundary domain.
Sometimes, boundary nodes are explicitly identified differently from internal nodes.
In other cases, the total set of nodes is the only information available and the
algorithm must recognize the boundary nodes.

The use of the extended Delaunay partition makes it easier to recognize bound-
ary nodes.

Considering that the nodes follow a variable h(x) distribution, where h(x) is
the minimum distance between two nodes, the following criterion has been used.
All nodes on an empty sphere with a radius greater than αh, are considered as
boundary nodes. In practice, α is a parameter close to, but greater than one. Note
that this criterion is coincident with the Alpha Shape concept [Edelsbrunner and
Mucke (1999)].

Once a decision has been made concerning which nodes are on the boundaries,
the boundary surface must be defined. It is well known that in 3-D problems the
surface fitting for a number of nodes is not unique. For instance, four boundary
nodes on the same sphere may define two different boundary surfaces, a concave
one and a convex one.

In this work, the boundary surface is defined by all the polyhedral surfaces (or
polygons in 2D) having all their nodes on the boundary and belonging to just one
polyhedron.

Figure 4 shows example of the boundary recognition using the Alpha Shape
technique.

 

Fig. 4. Examples of boundary recognition with the Alpha Shape method. Empty circles with
radius greater than αh(x) define the boundary particles.
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The correct boundary surface is important to define the normal external to the
surface. Furthermore, in weak forms (Galerkin) such as those used here a correct
evaluation of the volume domain is also important. In the criterion proposed above,
the error in the boundary surface definition is proportional to h which is an accept-
able error. The only way to obtain a more accurate boundary surface definition is
by reducing the distance between the nodes.

The method described also allows one to identify isolated fluid particles outside
the main fluid domain. These particles are treated as part of the external boundary
where the pressure is fixed to the atmospheric value.

Figure 5 shows a schematic example of the process to identify individual particles
(or a group of particles) starting from a given collection of nodes. A practical
application of the method for identifying free surface particles is shown in Figure
6. The example corresponds to the analysis of the motion of a fluid within an
oscilating ellipsoidal container. Note that the method captures the individual water
drops departuring from the free surface during the fluid motion.

Fig. 5. Identification of individual particles (or a group of particles) starting from a given collection
of nodes.

9. Modelling a “Rigid” Structure as a Viscous Fluid

A simple and yet effective way to analyze the rigid motion of solid bodies in fluids
with the Lagrangian flow description is to model the solid as a fluid with a viscosity
much higher than that of the surrounding fluid. The fractional step scheme of
Section 5 can be readily applied skipping now step 5 and solving now for the
simultaneous motion of both fluid domains (the actual fluid and the fictitious fluid
modelling the quasi-rigid body). Examples of this type are presented in Sections
10.3 and 10.4.

Indeed this approach can be further extended to account for the elastic defor-
mation of the solid treated now as a visco-elastic fluid. This will however introduce
some complexity in the formulation and the full coupled FSI scheme described in
Section 5 is preferable.



The particle finite element method. An overview 17

(a)

(b)

Fig. 6. Motion of a liquid within an oscillating container. (a) Original distribution of particles
(nodes) prior to the oscillation. (b) Position of the liquid particles at two different times. The
boundary particles representing the free surface, the fluid drops and the container wall are plotted

with a lighter colour. Arrows indicate velocity vectors for each particle.

10. Examples

The examples chosen show the applicability of the PFEM to solve problems involv-
ing large fluid motions and FSI situations. The fractional step algorithm of Section
5 with θ2 = 1 and α = 1 has been used in all cases.

In examples 10.1–10.10 a value of θ1 = 1 has been chosen. This basically means
that the final configuration Ωn+1,j has been taken as the reference configuration
at each iteration. In example 10.11 θ1 = 0 has been selected and, hence, the ini-
tial configuration Ωn has been taken as a fixed reference configuration for all the
iterations within a time step.

10.1. Collapse of a water column

The first problem solved to show the potential of the PFEM is the study of the
collapse of a water column. This problem was solved by Koshizu and Oka (1996)
both experimentally and numerically. It has became a classical example to vali-
date the Lagrangian formulation for fluid flows. The water is initially kept within
a rectangular container including a removable vertical board. A double layer of
nodes in the solid walls is used in order to prevent water nodes from exiting the
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Fig. 7. Water column collapse at different time steps.

analysis domain. The boundary conditions impose zero velocity at the wall nodes
and zero (atmospheric) pressure at the free surface. Figures 7b and 7c show the
mesh discretizing the water domain and the solid walls at two different times of the
analysis. Note that the method allows one to follow the large motion of the water
particles including separation of some water drops. The collapse starts at time t =
0, when the board is removed. Viscosity and surface tension are neglected in the
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Fig. 7. cont.

analysis. Figure 7 shows the point positions at different time steps. The dark points
represent the free-surface detected with the algorithm described in Section 8. The
internal points are shown in a gray colour and the fixed points in black. The meshes
generated at different times during the fluid motion are shown in Figure 2.

The water is running on the bottom wall until, at 0.3 sec it impinges on the
right vertical wall. Breaking waves appear at 0.6 sec. At about 1 sec. the wave again
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reaches the left wall. Agreement with the experimental results of [Koshizuka and
Oka (1996)] both in the shape of the free surface as well as in its time evolution are
excellent.

The 3D solution of the same problem is shown in Figure 8. More information
on the PFEM solution of this problem can be found in Idelsohn et al. (2004).

a) t = 0 sec. b) t = 0.2 sec.

c) t = 0.4 sec. d) t = 0.6 sec.

e) t = 0.8 sec. f) t = 1.1 sec.

Fig. 8. Water column collapse in a 3D domain.
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10.2. Sloshing problems

The simple problem of the free oscillation of an incompressible liquid in a container
is considered next. Numerical solutions for this problem can be found in several
references [Radovitzki and Ortiz (1998)]. This problem is interesting because there
is an analytical solution for small amplitudes. Figure 9 shows a schematic view
of the problem and the point distribution in the initial position. The dark points
represent the fixed points on the walls where the velocity is fixed to zero.

Fig. 9. Sloshing. Initial point distribution.

Figure 10 shows the time evolution of the amplitude compared with the analyt-
ical results for the near inviscid case. Little numerical viscosity is observed on the
phase wave and amplitude in spite of the relative poor point distribution.

The analytical solution is only acceptable for small wave amplitudes. For larger
amplitudes, additional waves are overlapping and, finally, the wave breaks and also
some particles separate from the fluid domain due to their large velocity. Figure 11
shows the numerical results obtained with the PFEM for larger sloshing amplitudes.
Breaking waves as well as separation effects can be seen on the free-surface. This
particular and very complicated effect is well represented by the PFEM.

In order to test the potential of the PFEM in a 3D domain, the same sloshing
problem was solved in 3D. Figure 12 show the different point positions at two time
steps. Each point position was represented by a sphere and only a half of the fixed
recipient is represented on the figure. This sphere representation is only used in
order to improve the visualization of the numerical results.
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Fig. 10. Sloshing: Comparison of the numerical and analytical solutions.

  

Fig. 11. PFEM results for a large amplitude sloshing problems.

10.3. Wave breaking on a beach

A simulation of the propagation of a water wave and its breaking due to shoal-
ing over a plane slope is presented next. This example was numerically studied
in [Radovitzki and Ortiz (1998)] with a Lagrangian formulation using directly the
standard Finite Element Method with remeshing. There is also an analytical solu-
tion for a simplified approximation that is used for comparisons [Laitone (1960)]
where the geometry of the problem as well as a discussion of the analytical solu-
tion may be found. Figure 13 shows the initial point distribution and Figure 11 a
comparison with the analytical free-surface at different time steps.
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Fig. 12. 3D sloshing problem.

Fig. 13. Wave breaking on a beach. Initial geometry and point positions.

Initially (Figures 14a. and 14b.) the wave travels over a constant depth bottom
towards the slope with no ostensible change of shape. Strongly non-linear effects
appear when the wave hits the slope (Fig. 14c.). The crest of the wave accelerates
until it reaches the shore (Fig. 14d.). At this time the comparisons with the ana-
lytical solution are in agreement only in the wave position. The shape of the wave
obtained with the numerical solution is totally different. The reason is that before
the breaking process the analytical solution gives symmetrical shape waves, which
are not physical. Subsequently, a water jet is formed at the crest plunge making
the breaking wave (Figs. 14e. and 14f.) and coming in contact with the nearly still
surface of the water ahead. In Ref. [Radovitzki and Ortiz (1998)] the computation
is stopped before this contact point. Using the methodology proposed in this paper,
the analysis may be continued until the end. In Figs. 14g. and 14h. the wave finally
hits a lateral wall (introduced in the model to stop the lateral effects) producing
drop separations, and then coming back toward to the left as a new wave.

The ability of the PFEM to accurately simulate the various stages of the wave
breaking is noteworthy.
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                      a)   t = 0   sec.                                                  b)   t = 6 sec.  

  
                         c)  t =  10 sec.                                                d)  t = 11 sec. 

  
                     e)   t =  12 sec.                                               f)  t = 13 sec.  

  
                       g)   t = 14 sec.                                              h)  t = 16 sec.  

Fig. 14. Wave breaking on a beach. Comparison with analytical results at different time steps.
Top: PFEM solution. Bottom: Analytical solution.
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In order to show the power of the PFEM, the same problem was solved in a 3D
domain. Now, the initial position of the wave was given an oblique angle with the
beach line. In this way, 3D effects show more clearly. When the wave hits the slope,
the crest of the wave accelerates differently accordingly with the depth, inducing
the wave to correct its oblique position and break parallel to the beach. The results
may be seen in Figure 15 for different time steps.

Fig. 15. Breaking wave on a beach. Oblique wave on a 3D domain.
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10.4. Fixed ship hit by wave

This example is a very schematic representation of a ship when is hit by a big wave.
The ship can not move and initially the free-surface near the ship is horizontal.
Fixed nodes represent the ship as well as the domain walls. The example tests the
suitability of the PFEM to solve water-wall contact situations even in the presence
of curved walls. Note the breaking and splashing of the waves under the ship prow
and the rebound of the incoming wave. It is also interesting to see the different
water-wall contact situations at the internal and external ship surfaces and the
moving free-surface at the back of the ship.

10.5. Horizontal motion of a rigid ship in a reservoir

In the next example (Figure 17) the same ship of the previous example moves now
horizontally at a fixed velocity in a water reservoir. The free-surface, which was
initially horizontal, takes the correct position at the ship prow and stern. Again,
the complex water-wall contact problem is naturally solved in the curved prow
region.

10.6. Semi-submerged rotating water mill

The example shown in Figure 18 is the analysis of a rotating water mill semi-
submerged in water. The blades of the mill are treated as a rigid body with an
imposed rotating velocity, while the water is initially in a stationary flat position.
Fluid structure interactions with free-surfaces and water fragmentation are well
reproduced in this example.

10.7. Floating wood piece

The next example shows an initially stationary recipient with a floating piece of
wood where a wave is produced on the left side. The wood has been simulated
by a liquid of higher viscosity as described in Section 9. The wave intercepts the
wood piece producing a breaking wave and displacing the floating wood as shown
in Figure 19.

10.8. Ships hit by an incoming wave

In the example of Figure 20 the motion of a fictitious rigid ship hit by an incoming
wave is analyzed. The dynamic motion of the ship is induced by the resultant of
the pressure and the viscous forces acting on the ship boundaries. The horizontal
displacement of the gravity center of the ship was fixed to zero. In this way, the
ship moves only vertically although it can freely rotate. The position of the ship
boundary at each time step defines a moving boundary condition for the free surface
particles in the fluid. Figure 20 shows instants of the motion of the ship and the
surrounding fluid. It is interesting to see the breaking of a wave on the ship prow
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Fig. 16. Fixed ship hit by incoming wave
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Fig. 17. Moving ship with fixed velocity
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Fig. 18. Rotating water mill.

as well as on the stern when the wave goes back. Note that some water drops slip
over the ship deck.

Figure 21 shows the analysis of a similar problem using precisely the same ap-
proach. The section of the ship analyzed corresponds now to that of a real container
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Fig. 19. Floating wood piece hit by a wave

ship. Different to the previous case the rigid ship is free to move laterally due to
the sea wave forces. The objective of the study was to assess the influence of the
stabilizers in the ship roll. The figures show clearly how the PFEM predicts the
ship and wave motions in a realistic manner.
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Fig. 20. Motion of a rigid ship hit by an incoming wave. The ship is modelled as a rigid solid
restrained to move in the vertical direction.
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Fig. 21. Ship with stabilizers hit by a lateral wave
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10.9. Tank-ship hit by a lateral wave

Figure 22 represents a transversal section of a tank-ship and a wave approaching
it. The tank-ship is modelled as a rigid body and it carries a liquid inside which
can move freely within the ship domain.

time[sec]: 0.000000

time[sec]: 1.950000

time[sec]: 3.000000

time[sec]: 4.950000

Fig. 22. Tank-ship carrying an internal liquid hit by wave. Ship and fluids motion at different time
steps
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time[sec]: 6.150000

time[sec]: 8.550000

Fig. 22. Cont.

Initially (t = 0.0) the ship is released from a fixed position and the equilibrium
configuration found is consistent with Archimedes principle. During the following
time steps the external wave hits the ship and both the internal and the external
fluids interact with the ship boundaries. At times t = 6.15 and 8.55 breaking waves
and some water drops slipping along the ship deck can be observed. Figure 23 shows
the pressure pattern at two time steps.

10.10. Rigid cube falling into a water container

In the next example a solid cube is initially free and falls into a container of water
recipient. In this example, the rigid solid is modeled first as a fictitious fluid with a
higher viscosity, similarly as for the floating solid of Section 10.7. The results of this
analysis are shown in Figure 24. Note that the method reproduces very well the
interaction of the cube with the free surface as well as the overall sinking process.
A small deformation of the cube is produced. This can be reduced by increasing
further the fictitious viscosity of the cube particles.

The same problem is analyzed again considering now the cube as a rigid solid
subjected to pressure and viscous forces acting in its boundaries. The resultant of
the fluid forces and the weight of the cube are applied to the center of the cube.
These forces govern the displacement of the cube which is computed by solving
the dynamic equations of motion as described in the fractional step algorithm of
Section 5, similarly as for the rigid ships of the three previous examples. Here again
the moving cube contours define a boundary condition for the fluid particles at each
time step.
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time[sec]: 1.950000

time[sec]: 6.150000

Fig. 23. Tank ship under lateral wave. Pressure distribution at two time steps.

Initially the solid falls freely due to the gravity forces (Figure 25). Once in
contact with the water surface, the Alpha-Shape method recognizes the different
boundary contours which are shown with a thick line in the figure. The pressure
and viscous forces are evaluated in all the domain and in particular on the cube
contours. The fluid forces introduce a negative acceleration in the vertical motion
until, once the cube is completely inside the water, the vertical velocity becomes
zero. Then, buoyancy forces bring the cube up to the free-surface. It is interesting
to observe that there is a rotation of the cube. The reason is that the center of the
floating forces is higher in the rotated position than in the initial ones.

Figure 26 shows a repetition of the same problem showing now all the finite
elements in the mesh discretizing the fluid. We recall that in all the problems here
described the mesh in the fluid domain is regenerated at each time step combining
linear triangles and quadrilateral elements as described in Section 7. Note that some
fluid particles separate from the fluid domain. These particles are treated as free
boundary points with zero pressure and hence fall due to gravity.

It is interesting to see that the final position of the cube is different from that
of Figure 25. This is due to the unstable character of the cube motion. A small
difference in the numerical computations (for instance in the mesh generation pro-
cess) shifts the movement of the cube towards the right or the left. Note that a final
rotated equilibrium position is found in both cases.
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Fig. 24. Solid cube falling into a recipient with water. The cube is modelled as a very viscous fluid.

10.11. The Rayleigh-Bénard Instability

This example shows that the PFEM can also be successfully used to solve fluid flow
problems traditionally analyzed with Eulerian formulations. The problem solved
is that of a heated thin cavity containing a fluid. The flow pattern yields the so
called Rayleigh-Bénard hydrodynamical instability giving a roll pattern along the
cavity. In this case the Lagrangian fluid flow equations are solved together with the
heat transfer equation also written in a Lagrangian manner. As mentioned at the
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Fig. 25. Cube falling into a recipient with water. The cube is modelled as a rigid solid. Motion of

the cube and free surface positions at different time steps.

introduction of Section 10 a value of θ1 = 0 has been taken in this example. Details
of the solution scheme using a Boussinesq approximatlions for the coupling between
the heat transfer equation and the flow equations are given in Aubry et al. (2004).

The bottom and upper part are isothermal with a temperature of 21◦ C for the
bottom and 19◦ C for the top. The initial and reference temperature in the fluid is
20◦ C and the side parts are adiabatic. The Rayleigh number is 105 and the Prandtl
number is 10−1. The mesh has 35500 nodes and 69700 elements at the beginning of
the analysis. The numerical computations start with the fluid at rest as the initial
conditions. For rigid-rigid boundary conditions, the critical value of the Rayleigh
number is 1708 so that the flow is here supercritical. However, a quasi-steady state
is reached, with periodic oscillations of the temperature and the cells. Figure 27
shows results of the temperature and velocity field showing the development of
rolls. Numerical results have been plotted using the GiD pre/postprocessing system
developed at CIMNE [Gid (2004)]. More details on the application of the PFEM
to this problem can be found in Aubry et al. (2004).
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Fig. 26. Cube falling in a water recipient. The cube is modeled as a rigid solid. The finite element

meshes generated at the selected instants are shown.
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(a)

(b)

(c)

(d)

(e)

Fig. 27. Rayleigh-Bénard instability with Ra = 105 and Pr = 10−1. (a) Temperature field. (b)
Detail of temperature field. (c) Velocity norm field. (d) Detail of velocity norm field plotted on
each particle. (e) Velocity vectors on temperature field.
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11. CONCLUSIONS

The particle finite element method (PFEM) seems ideal to treat problems involving
fluids with free surface and submerged or floating structures within a unified La-
grangian finite element framework. Problems such as the analysis of fluid-structure
interactions, large motion of fluid or solid particles, surface waves, water splashing,
separation of water drops, etc. can be easily solved with the PFEM. The success
of the method lies in the accurate and efficient solution of the equations of an in-
compressible fluid and of solid dynamics using a stabilized finite element method
via a fractional step scheme allowing the use of low order elements with equal or-
der interpolation for all the variables. Other essential solution ingredients are the
efficient regeneration of the finite element mesh using an extended Delaunay tesse-
lation, the meshless finite element interpolation (MFEM) and the identification of
the boundary nodes using an Alpha Shape type technique. The examples presented
have shown the potential of the PFEM for solving a wide class of practical FSI
problems.
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Appendix

From Eqs.(7) and (3) it can be obtained (taking into account the definition of the
stresses σij and Eqs.(5))

∂rd

∂xi
= − 1

ai

[
r̄mi −

hj

2
∂rmi

∂xj

]
− ρuihk

2ai

∂rd

∂xk
i, j = 1, nd , k �= i (A.1)

where

ai =
2µ
3

(A.2a)

and

r̄mi = ρ
∂ui

∂t
+

∂p

∂xi
− ∂

∂xj
(2µε̇ij) − bi (A.2b)

Substituting Eq.(A.1) into Eq.(8) and retaining the terms involving the deriva-
tives of rmi with respect to xi only, leads to the following expression for the stabi-
lized mass balance equation

rd −
nd∑
i=1

τi
∂rmi

∂xi
= 0 (A.3)

with

τi =
3h2

i

8µ
(A.4)
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Idelsohn, S.R., Oñate, E. and Del Pin, F. (2003b). A lagrangian meshless finite
element method applied to fluid-structure interaction problems. in Computer
and Structures, 81: 655–671.
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Oñate, E. (2004). Possibilities of finite calculus in computational mechanics. Int. J.
Num. Meth. Engng., 60 (1): 255–281.
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